Andrea R. Rossi INFN – MI

on behalf of the SPARC_LAB team

XCIX Congrsso nazionale SIF – Trieste 25/09/2013

Why advanced acceleration?

Acc. length for a 1 TeV machine: $\approx 10^5$ m

 $\approx 10^4 \,\mathrm{m} \qquad \approx 10 \,\mathrm{m}$

Peak field scales as square root of plasma density, i.e. plasma frequency.

Advanced acceleration and beam dynamics at SPARC_LAB

Monday: C. Vaccarezza – Thomson source A. Mostacci – Comb beams for PWFA

Tuesday:

L. Serafini, V. Petrillo – Thomson source F. Massimo – Transformer ratio for PWFA E. Chiadroni – THz sources L. Lancia – Capture of PWFA beck F. Villa – Two colours FEL

> Wednesday: A. Cianchi – Advanced beam dynamics R. Pompili – EOS dyagnostics

Thursday: M. Bellaveglia – fs synchronization

Advanced acceleration experiments can be ideally divided in 3 sub-categories:

Laser only

- Laser Wake Field Acceleration (LWFA) with self-injection
- Heavy particles acceleration (protons and light ions) by different physical mechanisms

Electrons only

- Particle Wake Field Acceleration (PWFA)
- Dielectric Wake Field Acceleration (DWFA)

Laser + electrons

- LWFA with External Injection
- Inverse Free Electron Laser (IFEL)

Advanced acceleration experiments can be ideally divided in 3 sub-categories:

Laser only

Electrons only

Laser + electrons

Pros

 The "easiest" to implement (requires "only" to tune the laser and the target)

Cons

 Little to flimsy control over the whole process

Pros

 Easier implementation than laser+electrons (no need for indipendent synchro system and driver guiding)

Cons

 Produced e-beams quality and energy depends heavily on the ability to properly taylor the driver(s) and witness phase spaces

Pros

 In principle has the best potentialities in term of ebeam brightness and energy

Cons

 The hardest to implement (laser guiding, sichronization issues, ...)

Plasma accelerator: external injection LWFA: self-injection

Colliding pulses

Plasma accelerator: external injection LWFA: external injection

Plasma accelerator: external injection LWFA: external injection

Plasma accelerator: external injection EXIN: goals

- Produce a high brilliance e-beam, peak or global.
- Stability.
- Reproducibility.
- Everything above in the easiest possible way.

Highest energy record in LWFA is NOT a goal!

Plasma accelerator: external injection EXIN: choice of settings

Plasma wave regime

Easier and more stable but beam loading can be very important (beam driver). Would require the capability to manage bunches with a charge in the range from hundreds of fC to few pC.

Fields are quite intense so performances can be very interesting.

Beam loading can be significant but manageable with bunch charges up to few tens of pC.

The hardest to implement and manage, due to high sensitivity to jitters.

celerating region

470

460

480

Bubble

decelerating

490

500

2.0

1.0

0.5

0.0

Highest performances and beam loading is not a problem up to few hundreds of pC. Possible in future.

Plasma accelerator: external injection EXIN: choice of settings

Laser guiding

Plasma accelerator: external injection EXIN: simulations

Laser parameters

- Energy: 6 J;
- Length: 35 fs (FWHM);
- W_0 : 65 um;
- Rayleigh range: ~ 1.6 cm;
- Gaussian profiles;
- Guided by transverse plasma density tapering;
- Acceleration length: ~ 8 cm.

- Charge: 5 pC
- σ_{tr} : ~ 4.5 um;
- σ_z: 4.5 um;
- ϵ_n : 0.8 mm mrad;
- δγ/γ: 9 x 10⁻⁴;

XCIX Congrsso nazionale SIF – Trieste 25/09/2013

Plasma accelerator: external injection **EXIN:** simulations Setting 2: n₀=1.0 x 10¹⁷ cm⁻³

Out - Beam parameters (not including red particles: 15% charge cut)

- σ_{tr}: ~ 2.3 um;
- σ₋: 1.7 um;
- ε_n: 0.9 mm mrad;
- $\delta \gamma / \gamma$: 2.3 x 10⁻² (no significant beam loading);

2,2

2,0

1,8

1,6 1,4

1,2

1,0

0,8

0,6

um and %

δγ/γ (%)

ε_{nx} (μ**m**)

I (A)

250

200

150

100

50

Amp

Conclusions

- External injection appears as a very promising scheme to exploit plasma acceleration for high brightness electron beam.
- Technical issues are challenging but we are doing our best to overcome them.
- Exin beam line is under construction stage at LNF INFN.

• First accelerations are expected for mid to late 2015.

Backup slides

The External Injection experiment @ SPARC LAB

Choice of parameters: physical and practical constraints

Plasma accelerator: external injection **EXIN:** simulations Setting 2: n₀=1.0 x 10¹⁷ cm⁻³

Out - Beam parameters (not including red particles: 15% charge cut)

- σ_{tr}: ~ 2.3 um;
- σ₋: 1.7 um;
- ε_n: 0.9 mm mrad;
- $\delta \gamma / \gamma$: 2.3 x 10⁻² (no significant beam loading);

2,2

2,0

1,8

1,6 1,4

1,2

1,0

0,8

0,6

um and %

δγ/γ (%)

ε_{nx} (μ**m**)

I (A)

250

200

150

100

50

Amp