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a numerical problem: heavy quark propagators decay too fast!

first principle approaches to flavour physics are of fundamental importance in the search for physics beyond the
Standard Model

in order to calculate heavy flavour observables on the lattice we need to solve the linear system

(D + M) ψ = η
y0

on the one hand, the numerical inversion is quite fast for
heavy quarks

on the other hand, at large times the solution is poorly
accurate because |ψ(x0;~x)|may become much smaller
than r for x0 � y0

a solver:

n −→ n + 1

apply (D + M) a few times . . .

a bit of linear algebra . . .

check if |(D + M) ψn − ηy0 | < r



a numerical problem: free theory

C(t) = −tr{S(0, t)S†(t, 0)}
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this is a ”heavy” pseudoscalar-pseudoscalar correlator in free theory

we do expect that if we choose a residue that is too big something should go wrong at large time distances from
the source . . .

in this particular case we can compare the numerical inversion performed with a ”big” residue r = 10−6 with the
one performed with a ”small” residue r = 10−11



a numerical problem: free theory
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a numerical problem: free theory

MPP (t)
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by changing a bit the quark mass the effect may become ”particularly” evident

in this work we have analyzed situations in which the problem can be easily identified and such that ”exact”
results can be obtained by working with double precision architecture

we have been working with ”big” residues r ∼ 10−6 also because this is the best one can do with single precision
architectures (GPU are much faster in single precision)



a numerical problem: interacting theory

MPP (t)

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 10  15  20  25  30

res= 10-11 unpreconditioned res= 10-6 unpreconditioned

here we see the same effect in the interacting theory. . .

simulation details: β = 5.3, ksea = 0.13625, amsea ' 0.07, amh ' 0.35

we have been working with ”big” residues r ∼ 10−6 also because this is the best one can do with single precision
architectures (GPU are much faster in single precision)



a numerical trick: heavy quark propagators decay as slow as light quark propagators

in order to solve this numerical problem we propose to precondition the preferred lattice Dirac operator as follows

ψ(~x, x0) −→ α(x0) χ(~x, x0)
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this is a matrix that is diagonal in color, Dirac and space indexes and it must be invertible

(D + M) ψ(~x, x0) = α(x0) (Dprec
+ M) χ(~x, x0)



a numerical trick: free theory

C(t) = −tr{S(0, t)S†(t, 0)}
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we choose:

ψ(~x, x0) −→ cosh [m0(x0 − T/2)] χ(~x, x0)

and, in this particular case, m0 = 0.4. We calculate numerically χ(~x, x0),



a numerical trick: free theory

C(t) = −tr{S(0, t)S†(t, 0)}

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0  10  20  30  40  50  60  70

r=10-11 unpreconditioned
r=10-6 unpreconditioned

r=10-6 preconditioned

we choose:
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a numerical trick: free theory
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a numerical trick: interacting theory

MPP (t)
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also in the interacting case we choose:

ψ(~x, x0) −→ cosh [m0(x0 − T/2)] χ(~x, x0)

and m0 = 0.4. We calculate numerically χ(~x, x0), and offline we get ψ(~x, x0)



a numerical trick: Schrödinger Functional setup

up to now we have been discussing the case of periodic boundary in the time direction

our preconditioning may be particularly relevant in the case of fixed boundary conditions in the time direction:

F ∝

pf

pi

vuuuuuuuuuuuuuuuuuuuuut



a numerical trick: SF free theory

C(t) = −tr{S(0, t)S†(t, 0)}
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we choose:

ψ(~x, x0) −→ exp (m0x0) χ(~x, x0)

We calculate numerically χ(~x, x0), and offline we get ψ(~x, x0)



a numerical trick: SF free theory

C(t) = −tr{S(0, t)S†(t, 0)}
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we choose:

ψ(~x, x0) −→ exp (m0x0) χ(~x, x0)

We calculate numerically χ(~x, x0), and offline we get ψ(~x, x0)



a numerical trick: SF interacting theory

MPP (t)
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here we see the same effect in the interacting theory. . .

simulation details: β = 6.638, L ∼ 0.5 fm

this is a ”small volume” simulation needed to study B-physics on the lattice by using the so-called Step Scaling
Method

with this preconditioning it will be possible to separate ”genuine” finite volume effects from ”excited states
contaminations” by making small volume simulations with T = 4L



a numerical trick: different preconditioning

the preconditioning that we have been discussing up to now

it is particularly simple to implement

solves the large time numerical precision issue for heavy quark propagators,

can be ”removed” after having computed the correlation functions

by relaxing the last property, one can as easily as before explore several other possibilities

extend the same trick to the other directions

give to the matrix α a ”structure” in Dirac space

. . .

in the following we shall briefly discuss the following preconditioning:

ψ(x0, x1, x2, x3) −→ α(x0) α(x1) α(x2) α(x3) χ(x0, x1, x2, x3)



a numerical trick: different preconditioning

MPP (t)
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we choose (m0 = 0.4):

ψ(x0, x1, x2, x3) −→

0@ 3Y
i=0

cosh [m0(xi − Li/2)]

1A χ(x0, x1, x2, x3)



a numerical trick: different preconditioning

MPP (t)
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we get the same answer as before but by performing many more iterations for the solver to converge:

simulation details: β = 5.3, ksea = 0.13625, amsea ' 0.07, amh ' 0.35

DD-fgcr inverter r = 10−11 unpreconditioned: 7 iterations

DD-fgcr inverter r = 10−6 time preconditioned: 6 iterations

DD-fgcr inverter r = 10−6 all-d preconditioned: 23 iterations



the same numerical trick: speeding up numerical inversions for light quarks

we make light quark propagators decay faster by choosing:

ψ(x0, x1, x2, x3) −→

0@ 3Y
i=0

1

cosh [m0(xi − Li/2)]

1A χ(x0, x1, x2, x3)

β L3 × T ksea r m0 iterations

D5 5.3 243 × 48 0.13625 10−11 0.0 175
D5 5.3 243 × 48 0.13625 10−11 0.4 141

E3 5.3 323 × 64 0.13605 10−10 0.0 100
E3 5.3 323 × 64 0.13605 10−10 0.2 79
E3 5.3 323 × 64 0.13605 10−10 0.4 70

E4 5.3 323 × 64 0.13610 10−10 0.0 115
E4 5.3 323 × 64 0.13610 10−10 0.2 91
E4 5.3 323 × 64 0.13610 10−10 0.4 81

E5 5.3 323 × 64 0.13625 10−10 0.0 194
E5 5.3 323 × 64 0.13625 10−10 0.2 153
E5 5.3 323 × 64 0.13625 10−10 0.4 141



conclusions & outlooks

we have considered a ”family” of preconditioning that are easy to implement

that can be used to perform ”flavored” quark inversions on single precision architectures (e.g. GPUs, Cell, etc.)
with the same numerical accuracy one would get on n-precision architectures

on double precision machines, our preconditioning can be used to speed up the calculation of light quark
propagators

we have demonstrated that one can easily gain up to 30% in computational time without compromising the
numerical accuracy

we are working to use such kind of preconditioning in the HMC generation of gauge field configurations

we are exploring several other possibilities with respect to the ones discussed in this talk and, in particular, giving a
Dirac ”structure” to the preconditioning operator


