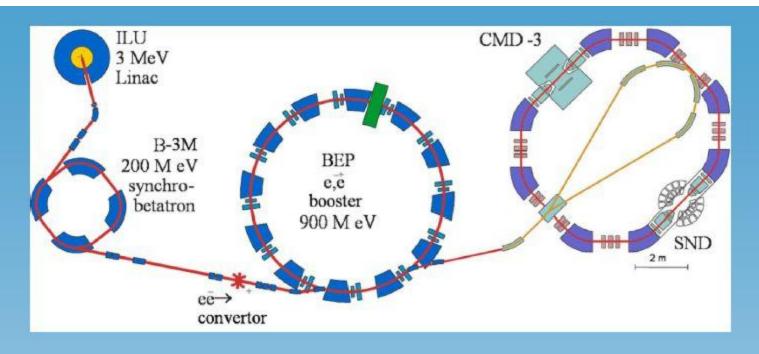
Physics at VEPP-2000

Peter A. Lukin, Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia


(for CMD3, SND and VEPP2000 collaborations)

Talk, given at LNF Spring Institute, June 7, 2010, Frascati, Italy

Outline

- Collider
- Physics Program
 - Interactions of light quarks
 - Fundamental quantities and R
 - Experiemental requirements
- Detectors
- Conclusion

VEPP-2000 Storage ring

- Up to 2 GeV c.m. energy
- Factor >10 in luminosity
 L=10³¹ cm⁻²c⁻¹, √s=1.0 GeV
 L=10³² cm⁻²c⁻¹, √s=2.0 GeV

≈100 1/pb per detector per year

What can we learn

- Detailed study of exclusive processes $e^+e^- \rightarrow (2-7)h$, $h=\pi,K,\eta,p...$
 - Test of models and inputs to theory (ChPT, VDM, QCD)
 - Properties of vector mesons (ρ' , ω' , ϕ' ...)
 - Search for hybrids (999) and glueballs
 - \square Test of CVC relations between e⁺e⁻ and τ -lepton
 - Interactions of light (uds) quarks
- High precision determination of $R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$

at low energies and fundamental quantities

- $(g_{\mu}-2)/2$
- $\alpha_{\rm S}({\rm M_Z}^2)$
- QCD sum rules (α_5 , quark and gluon condencates)

Shopping List

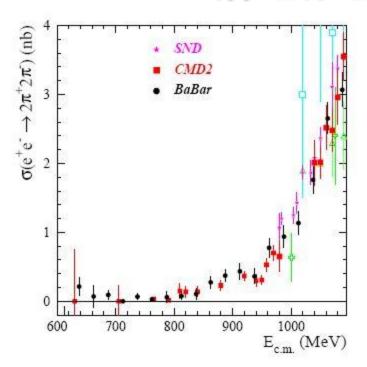
- Studies of exclusive channels
- Properiries of ρ , ω and ϕ
- ϕ as a source of tagged kaons, η and η' mesons
- Higher vector resonances
- R and fundamental parameters ($(g_{\mu}-2)/2$, $\alpha_s(M_Z^2)$, quarks masses ...)
- Test of CVC (e⁺e⁻ vs τ)
- Nucleon formfactors at threshold
- Non-vector states
- γγ physics
- Higher order QED

Properties of Basic Vector Mesons

Meson	ρ	ω	ф
Mass, MeV	775.8±0.5	782.65±0.12	1019.46±0.02
Width, MeV	146.4±1.5	8.49±0.08	4.26±0.05
B _{ee} , 10 ⁻⁵	4.67±0.09	7.18±0.12	29.7±0.4
Modes studied	12	17	27
Min B	2.10-5	7·10 ⁻⁵	4·10 -6

What else for ρ, ω, ϕ ?

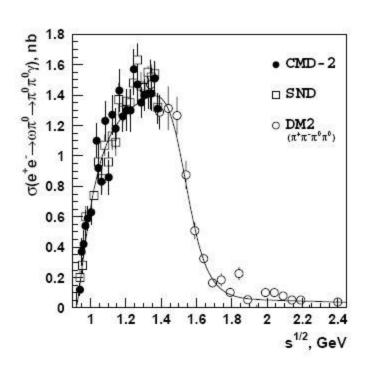
- Γ_{ee}
- Rare decay modes $\rho(\omega) \rightarrow f_0(600)\gamma$, $\rho \rightarrow 3(4)\pi$
- Comparision of ρ^0 and ρ^+ mass and width in view of $\text{CVC}(\tau)$ problem
- Definition of ρ meson mass and width

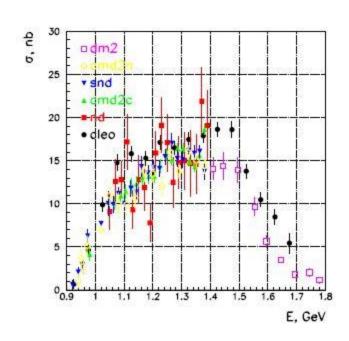

Properties of higher vector mesons


2 ³ S ₁	Mass, MeV, Width, MeV	13 D ₁	Mass, MeV, Width, MeV
ρ(1450)	1250 - 1500 60 - 550	ρ(1700)	1550 - 1780 100 - 600
ω(1420)	1370 - 1450 175 - 360	ω(1650)	1620 - 1750 100 - 370
φ(1680)	1620 - 1750 100 - 300		

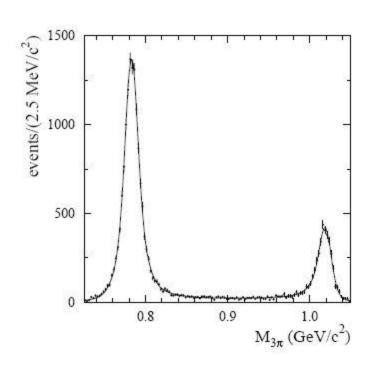
- $\rho' \rightarrow \pi^+\pi^-$, KK, 4π , 6π , $\pi^0(\eta, \eta')\gamma$
- $\omega' \rightarrow KK$, $\rho \pi$, $\omega \pi \pi$, $\omega \eta$, $\pi^0(\eta, \eta') \gamma$
- $\phi' \rightarrow KK$, $KK\pi$, $KK\pi\pi$, $\pi^0(\eta, \eta')$

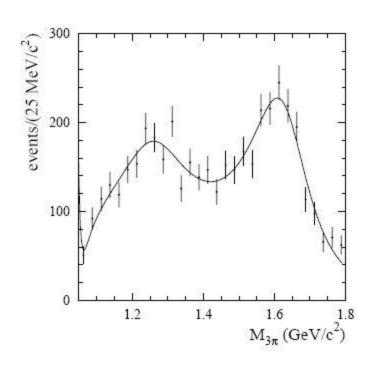
 Γ_{ee} is badly known Just few modes observed ISR gives hand!


Can we see ρ excitations in $2\pi^+2\pi^-$ mode?



One broad state seen! Separation of different channels $(a_1\pi, a_2\pi, \pi'\pi)$ needed


How many ρ excitations in $\omega\pi$ mode?



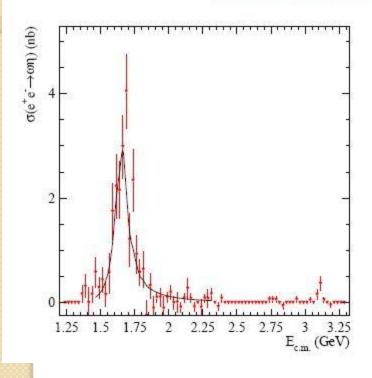
 $\rho(1450)$ only needed. Confirmed by CLEO in τ and B decays.

e+e- $\rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ at Babar

The final $\pi^+\pi^-\pi^0$ state is dominated by $\rho^+\pi^- + \rho^0\pi^0 + \rho^-\pi^+$

Parameters of $\omega(1420)$ and $\omega(1450)$

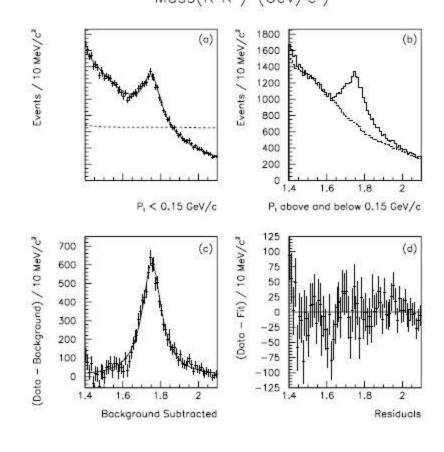
Analysis of BaBar


State	Mass, MeV	Width, MeV	$\Gamma_{e^+e^-}$, eV
$\omega(782)$	782.65 ± 0.12	8.49 ± 0.08	600 ± 20
$\omega(1420)$	$1350 \pm 20 \pm 20$	$450 \pm 70 \pm 70$	~ 370
$\omega(1650)$	$1660\pm10\pm2$	$230 \pm 30 \pm 20$	~ 570

Differ from those of SND $(\pi^+\pi^-\pi^0 \text{ and } \omega\pi^+\pi^-)$ – parameterization, new $\sigma_{\omega\pi\pi}$ needed

The $\Gamma_{e^+e^-}$ pattern in contradiction to the quark model, S. Godfrey and N. Isgur, 1985

ω'' or ϕ'


BaBar observes a structure in $e^+e^- \to \omega \eta$

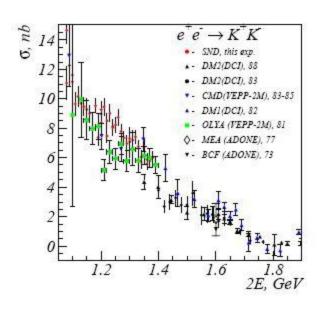
Group	Mass, MeV	Width, MeV
PDG	1680 ± 20	150 ± 50
BaBar	1645 ± 8	114 ± 14

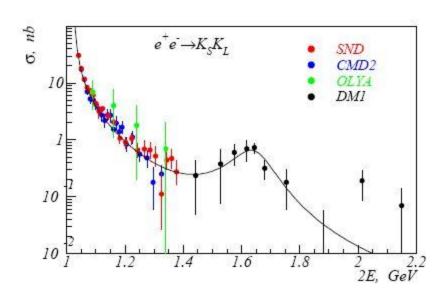
φ' at FOCUS?

High statistics observation of the K^+K^- structure in photoproduction $Moss(K^+K^-)$ (GeV/c²)

More about ϕ'

Parameters of the FOCUS structure (mass of 1753 ± 3 MeV and width of 122 ± 63 MeV) are close, but . . . :


From the previous data of DM1 and DM2 $B(K\bar{K})/B(\bar{K}^*(892)K) = 0.07 \pm 0.01$


while FOCUS observes an opposite pattern:

$$B(\bar{K}^*(892)^0 K^0 \to K^{\pm} \pi^{\mp} K_S^0) / B(K^+ K^-) < 0.065$$

 $B(\bar{K}^*(892)^{\pm} K^{\mp} \to K^{\pm} \pi^{\mp} K_S^0) / B(K^+ K^-) < 0.183$

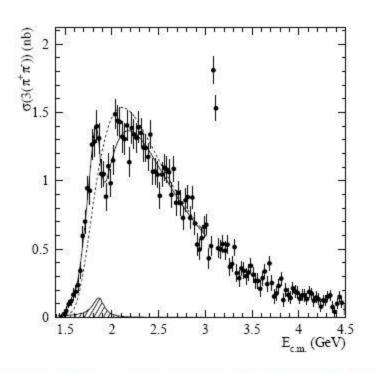
More experimental information is needed.

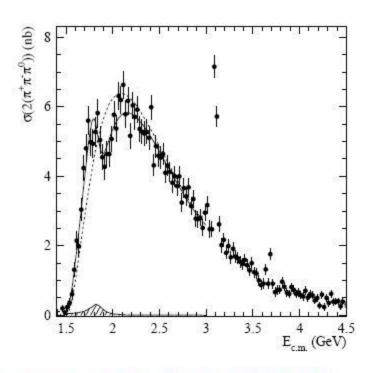
e+e- \rightarrow K⁺K⁻, K_LK_S at VEPP-2M

• No evidence for the ϕ'

• Evidence for the ϕ'

New $\rho(1900)$


- 2001: E687 (Fermilab) dip at 1.9 GeV in $\gamma N \to 3\pi^+ 3\pi^- N$
- 1996: FENICE (Frascati) dip at $2m_{N\bar{N}}$ in $e^+e^- \to \text{hadrons}$
- 1988: DM2 (Orsay) peculiarity at 1.9 GeV in $e^+e^- \rightarrow 6\pi$
- 2002: OBELIX (CERN) not observed in $\bar{n}p \to 3\pi^+ 2\pi^- \pi^0$


Group	Mass, GeV	Width, GeV
E687	$1911 \pm 4 \pm 1$	$29\pm11\pm~4$
FENICE	1870 ± 10	10 ± 5

Possible interpretation:

- Low width \Rightarrow non $q\bar{q}$
- Small mass for a glueball
- Vector hybrid?
- Bound NN state

p(1900) at Babar

A fit gives mass of 1.87 ± 0.02 GeV and too large width of 140 ± 30 MeV

More p' states ?

- $C(1480) \phi \pi$ state observed in Protvino in $\pi^- p$ with mass of 1480 ± 40 MeV and width of 130 ± 60 MeV Was not confirmed in e^+e^- (ND, DM2) and $p\bar{p}$ (Crystal Barrel)
- $\rho(2150)$ a state of this mass and width of 200 -300 MeV was claimed in some $N\bar{N}$ and π^-p analyses.

"Zoo" of Decays and hybrids

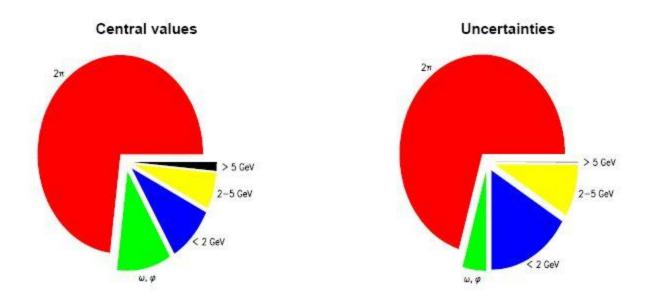
```
Below 1.1 GeV \pi^{+}\pi^{-}, K^{+}K^{-}, K_{S}K_{L}, \pi^{+}\pi^{-}\pi^{0} dominate, above 1.1 GeV -4\pi (2\pi^{+}2\pi^{-}, \pi^{+}\pi^{-}\pi^{0}\pi^{0}), 5\pi (2\pi^{+}2\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}), 6\pi (3\pi^{+}3\pi^{-}, 2\pi^{+}2\pi^{-}2\pi^{0}, \pi^{+}\pi^{-}4\pi^{0}), K\bar{K}\pi (K^{+}K^{-}\pi^{0}, K^{0}\bar{K}^{0}\pi^{0}, K^{\pm}K^{0}\pi^{\mp}), K\bar{K}\pi\pi (K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{0}\pi^{0}, K^{0}\bar{K}^{0}\pi^{+}\pi^{-}, K^{0}\bar{K}^{0}\pi^{0}\pi^{0}, K^{\pm}K^{0}\pi^{\mp}\pi^{0}).
```

Various intermediate mechanisms are possible:

$$4\pi \ (\omega \pi, \ a_1^{\pm} \pi^{\mp}, \ a_2^{\pm} \pi^{\mp}, \ \rho^{+} \rho^{-}, \ldots),$$

$$6\pi \ (\rho f_0(1370), \ \rho f_2(1270), \ \omega 3\pi, \ \eta 3\pi, \ldots),$$

$$K\bar{K}\pi \ (\rho(\omega, \phi)\pi, \ K^*\bar{K})$$


Theory can't exclude exotic states – hybrids $(q\bar{q}g)$ with close masses and peculiar decays $(\omega\pi, a_1\pi, h_1\pi)$

Other states $J^{pc} \neq 1^{--}$

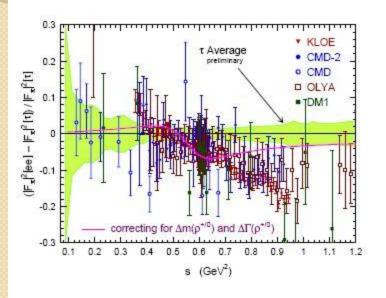
Study of hadronic states X in $e^+e^- \to X\pi, XK$: smaller combinatorial BG and pure initial state, e.g.,

- Search for new decay modes: $e^+e^- \rightarrow a_1(1260)\pi \rightarrow 4\pi$ at CMD-2 $(\tau \rightarrow 4\pi \text{ at CLEO}) a_1(1260) \rightarrow f_0(600)\pi \rightarrow 3\pi$
- Studies of hybrids in $e^+e^- \to \pi(1800)\pi \to 4\pi$
- $e^+e^- \to f_0(1370)\rho \to 6\pi$
- New states, e.g., 4π in $e^+e^- \to 5\pi$

Hadronic contribution to a had, LO

About 73% from 2π , $\sim 93\%$ from $\sqrt{s} < 2 \text{ GeV}$

Possible progress in a had, LO


More ISR analysis from KLOE, BaBar, Belle; better R below 4.3 GeV from CLEO-c: $4.4 \rightarrow 2.8$

Experiments at VEPP-2000 with 2 detectors up to \sqrt{s} =2 GeV with $L_{\rm max}=10^{32}~{\rm cm^{-2}s^{-1}},\,10^{30}~{\rm cm^{-2}s^{-1}}$ achieved

A similar machine (DA Φ NE-II) is discussed in Frascati, a $\tau-c$ factory in Beijing commissioning.

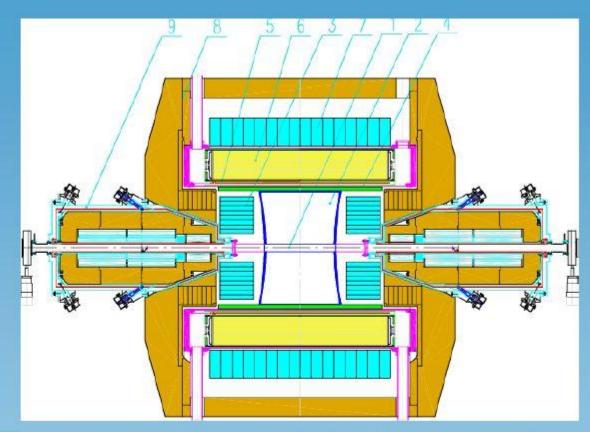
By 2012: $2.8 \rightarrow 2.2$, the total error of 4.6 limited by the LBL term (4.0)

e+e- vs τ - CVC tests

- CVC tested by one detector for $2m_{\pi}-m_{\tau}$
- Spectral functions for $2(4)\pi$ decays important for a_{μ}
- $\sigma_{ee} \Rightarrow \text{predict } B(\tau) \text{ for about } 10$ modes with the total B about 32%
- Spectral functions from e^+e^- provide a shape of those for τ (TAUOLA, m_{ν})

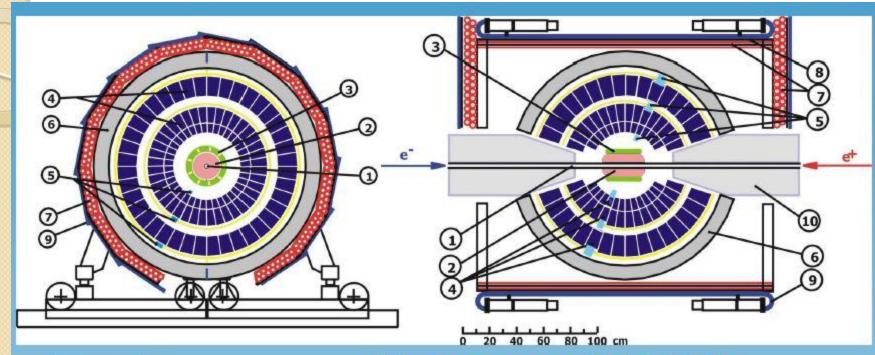
Experimental requirements

- High detector hermeticity to provide good acceptance
- Good $e^{\pm}/\mu^{\pm}/\pi^{\pm}$ separation for two-body channels
- γ , $\pi^{\pm}(K^{\pm})$, p(n) identification, reconstruction of π^0 , η , K_S^0 , Λ
- \bar{L} =10³¹ cm⁻² s⁻¹, ε =10%
- Broad resonances, $\Gamma \sim (150-300) \text{ MeV}$, possible $\Delta_{2E}=25 \text{ MeV}$
- At 2 GeV $\sigma_{\min} \sim 0.2$ nb (K^+K^-, K_SK_L) . Its 10% measurement \Rightarrow 5 pb⁻¹ per point. Most probable $(4\pi, 6\pi)$ processes have $\sigma \sim 5$ nb, at 5 pb⁻¹ per point stat. precision $\sim 2\%$.
- At lower energies dominant channels have larger σ
- At 60 points from 1 to 2.5 GeV about 300 pb⁻¹ needed 1 year of continuous running


Systematic uncertainties

- 1. Luminosity determination with 1% accuracy \Rightarrow MC QED generators, cross-checks with $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$.
- Radiative effects should be included to the MC generators ⇒ a problem for multihadronic final states, FSR
- 3. Specificity of exclusive measurements:
 - Variety of mechanisms ⇒ careful reconstruction
 - Precise and comlicated MC generators taking into account interference of various mechanisms and identical particles, form factors
 - Exclude missing final states
 - Background is small $(e^+e^- \to p\bar{p}(\pi^0))$ an exception?)
- 4. $\delta \sigma_{\rm syst}/\sigma \sim (2-3)\%$ if there are no correlations

CMD3 detector


Advantages compared to CMD-2:

- new drift chamber with x2 better resolution
 - better tracking
- thicker barrel calorimeter
 8X₀->15X₀
 better separation
- · LXe calorimeter
 - much better spatial resolution for γ's
 shower profile
- higher B field better momentum resolution

1 - vacuum tube, 2 - drift chamber, 3 - calorimeter BGO (680 crystals), 4 - Z-chamber, 5 - CMD-3 superconducting solenoid, 6 - calorimeter LXe (400 liters), 7 - calorimeter CsI (1152 crystals), 8 - magnet yoke, 9 - solenoids of VEPP-2000

SND detector

- 1 beam pipe
- 2 tracking system
- 3 aerogel
- 4 NaI(TI) crystals
- 5 phototriodes
- 6 muon absorber
- 7-9 muon detector
- 10 focusing solenoid

Advantages compared to "old" SND:

- · new system cherenkov counter (n=1.05, 1.13)
 - e/π separation E<450 MeV
 - π/K separation E<1 GeV
- · new drift chamber
 - better tracking
 - better determination of solid angle
- SND took first data in 2009 (around √s=1 GeV)

Do we need DAFNE-II after VEPP2000?

At the beginning of 2001 T. Kinoshita published a preprint:

Everyone makes mistakes: Including Feynman

10 months later M. Knecht and A. Nyffeler found that the sign of the dominant term in a_{μ}^{LBL} in his calculations was wrong

Experiments at VEPP-2000 will NOT be ultimate leaving enough room for DAFNE-II both for completely new effects and cross-checks increasing credibility of the conclusions

Conclusion

- \sqrt{s} < 2.5 GeV can provide a lot of important information on the interactions of light quarks: Rare decays of the ρ , ω , ϕ with $\mathcal{B} \sim 10^{-6} 10^{-7}$; studies of the ρ' , ω' , ϕ' and search for hybrids; nucleon form factors near threshold
- High precision R \Rightarrow better knowledge of $(g_{\mu} 2)/2$, $\alpha(M_Z^2)$, CVC tests, QCD sum rules, asymptotics of $R_{u,d,s}$ for m_c
- Various phenomena with effects of electroweak and strong interactions