$K^0 - \bar{K}^0$ mixing in the SM and beyond from $N_f = 2 \mbox{ tmQCD}$

Petros Dimopoulos

University of Rome La Sapienza

LNF - May 31, 2010

LNF May 31, 2010

Petros Dimopoulos

Outline

- *B_K* (SM)
 - $\epsilon_K \& B_K$
 - mixed (tm-OS) Wilson action:
 O(a)-improved calculation without unwanted mixing operator under renormalisation
 - Calculation & Results
- $\bar{K}^0 K^0$ beyond SM
 - set-up
 - Calculation & Results (Preliminary)
- Conclusions

Generalities

- $\epsilon_{\rm K}$ measured experimentally to sub percent precision; constrains the apex of the CKM UT
- B_K bag parameter which parametrizes the strong interaction effects in the neutral K oscillations

Generalities

• Define
$$|K_{S,L}\rangle = \frac{1}{\sqrt{2(1+|\bar{\epsilon}|^2)}} [(1+\bar{\epsilon})|K^0\rangle \mp (1-\bar{\epsilon})|\bar{K}^0\rangle]$$

• Experiment : $\epsilon_{\rm K} \equiv \frac{2\eta_{+-} + \eta_{00}}{3}$ with $\eta_{ij} = \frac{\mathcal{A}(K_L \to \pi^i \pi^j)}{\mathcal{A}(K_S \to \pi^i \pi^j)}$
• $Re(\epsilon_{\rm K}) = Re(\bar{\epsilon}) = \cos\phi_e \sin\phi_e \left[\frac{Im M_{12}}{\Delta m_{\rm K}} + \xi\right] \implies \epsilon_{\rm K} = e^{i\phi_e} \sin\phi_e \left[\frac{Im M_{12}}{\Delta m_{\rm K}} + \xi\right]$
• ϕ_e , $\Delta m_K \iff$ experiment
• $Im M_{12}$, ξ : calculated in SM

•
$$\epsilon_{\rm K} = \kappa_{\epsilon} \frac{e^{\epsilon_{\epsilon}}}{\sqrt{2}} \left[\frac{Im N_{12}}{\Delta m_{\rm K}} \right] \qquad \kappa_{\epsilon} = 0.94(2) \quad (\text{until 2008}, \kappa_{\epsilon} = 1)$$

(Buras & Guadagnoli, 2008; Buras, Guadagnoli, Isidori, 2010)

LNF May 31, 2010

Petros Dimopoulos

 $K^0-\tilde{K}^0$ mixing in the SM and beyond from $N_f=2\,\text{tm}\text{QCD}$

Calculation using the effective hamiltonian

$$\begin{array}{lll} M_{12} & \sim & \langle \bar{K}^0 | H_{\mathrm{eff}}^{\Delta S=2} | K^0 \rangle \\ & = & C(\mu) \langle \bar{K}^0 | \underbrace{(\bar{s} \gamma_{\mu}^L d) (\bar{s} \gamma_{\mu}^L d)}_{\mathcal{Q}(\mu)} | K^0 \rangle \end{array}$$

•
$$\epsilon_{K}^{\text{SM}} = \kappa_{\epsilon} \ C_{\epsilon} \ \hat{B}_{\text{K}} \ |V_{Cb}|^{2} \lambda^{2} \bar{\eta} \times (|V_{Cb}|^{2} (1 - \bar{\rho}) \eta_{tf} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{c}, x_{t}) - \eta_{cc} x_{c})$$

• $\epsilon_{K}^{\exp} = 2.237(7) \times 10^{-3} \ \frac{|V_{cb}|}{2} \ \hat{B}_{\text{K}} = 0.87(8)$

(V. Lubicz, LAT2009, 1004.3473)

evolution of B_K lattice estimate

B_K & Wilson fermions

- Due to Wilson term (and loss of chirality) B_K calculation is characterised by:
 - O(a) discretisation effects
 - 2 Complicated renormalization pattern
- Cure (2) using
 - WI and 4-point correlation function
 - (D. Becirevic, P. Boucaud, V. Gimenez, V. Lubicz and M. Papinutto,
 - Eur.Phys.J. 2004)
 - combinations of Wilson quarks with various combinations of twisted angle (ALPHA coll, P. D., J. Heitger, F. Palombi, C. Pena, S. Sint and A. Vladikas, NPB 2006)
- Cure (1) using
 - Symanzik program and include dim-7 counterterms → large uncertainties
 - Mtm QCD
- Cure <u>both</u> (1) and (2) employing
 - Mtm QCD & Mixed action

 $K^0 - \bar{K}^0$ mixing in the SM and beyond from $N_f = 2$ tmQCD

・ロト ・四ト ・ヨト ・ヨト

= nar

B_K by ETMC :

an O(a)-improved calculation with

simplified renormalisation pattern

in collaboration with:

R. Frezzotti, V. Gimenez, V. Lubicz, F. Mescia,

GC. Rossi, S. Simula, M. Papinutto, A. Vladikas

Mixed action (Frezzotti-Rossi, JHEP 2004)

 $S = S_{YM}^{tlSym} + S_{\psi,sea}^{Mtm} + S_{Q_f,valence}^{OS} + S_{gh,valence}$

with Mtm $N_f = 2$ sea action:

$$S_{\psi,\text{sea}}^{\text{Mtm}} = O^4 \sum_{x} \bar{\psi}(x) \left(\gamma \bar{\nabla} - i\gamma_5 \tau_3 W_{cr} + \mu_{sea}\right) \psi(x)$$

and $W_{cr} = -\frac{a}{2}r\nabla^*\nabla + M_{cr}(r)$

Using the non-anomalous chiral transformation for the light sea doublet

$$\psi = \exp(i\pi\gamma_5 au_3/4)\chi$$
 $ar{\psi} = ar{\chi}\exp(i\pi\gamma_5 au_3/4)$

pass from the *physical* to the *twisted* basis

$$S_{\chi,\text{sea}}^{\text{tm}} = a^4 \sum_{x} \bar{\chi}(x) \left(\gamma \tilde{\nabla} - W_{cr} + i \gamma_5 \tau_3 \mu_{sea} \right) \chi(x)$$

Mtm version of Wilson fermions enjoys desired chiral properties (for the charged pion) due to the chirally rotated W_{cr} wrt quark mass.

Mixed action (Frezzotti-Rossi, JHEP 2004)

Valence action à la Osterwalder-Seiler

$$S_{q_{f},\text{valence}}^{\text{OS}} = a^{4} \sum_{x} \sum_{f} \bar{q}_{f}(x) \left(\gamma \tilde{\nabla} - i\gamma_{5} r_{f} W_{cr} + \mu_{f}\right) q_{f}(x)$$

and

$$W_{Cr} = -\frac{a}{2} \nabla^* \nabla + M_{Cr}(r_f; r_{\rm sea})$$

 q_f are single quarks with chiral transformation: $q_f = exp(i\pi\gamma_5 r_f/4)q'_f$.

- isospin restoration
- O(a²)-unitarity violations

Partial Quenched set-up: $(q_1 = d, q_2 = s, q_3 = d', q_4 = s')$

•
$$M_0^{\text{sea}} = M_0^f = M_{cr}(r_f = \pm 1; 1)$$

• $\mu_{\text{sea}}^u = \mu_{\text{sea}}^d = \mu_d = \mu_{d'}$
• $\mu_s = \mu_{s'}$

•
$$r_{sea}^{u} = -r_{sea}^{d} = -r_{d'} = r_{d} = \pm 1$$

• $r_{s} = r_{s'} = \pm 1$

Calculate the 3-point correlator

$$C_{\mathrm{K'QK}}(z_0 - x_0, z_0 - y_0) = \sum_{\bar{x}, \bar{z}, \bar{y}} \langle (\bar{d}' \gamma_5 s') |_{x} Q_{VV+AA}^{\Delta S=2} |_{z} (\bar{d}\gamma_5 s) |_{y} \rangle$$

with the 4-fermion operator

 $\mathbf{Q}_{VV+AA}^{\Delta S=2} = 2\{(\bar{s}\gamma_{\mu}d)(\bar{s}'\gamma_{\mu}d')(\bar{s}\gamma_{\mu}\gamma_{5}d)(\bar{s}'\gamma_{\mu}\gamma_{5}d') + (\bar{s}\gamma_{\mu}d')(\bar{s}'\gamma_{\mu}d)(\bar{s}'\gamma_{\mu}\gamma_{5}d)(\bar{s}\gamma_{\mu}\gamma_{5}d')\}$

•
$$\Phi_{K'} = \bar{d}' \gamma_5 s'$$
 $(-r_{d'} = r_{s'} = 1)$ (tm-like)
 $\Phi_K = \bar{d} \gamma_5 s$ $(r_d = r_s = 1)$ (OS-like)

At maximal twist

- O(a)-improvement of ME
- Continuum-like

renormalization

i.e no operator mixing

< 3 > < 3

$$R_{B_{K}} = \frac{3}{8} \frac{C_{K'QK}(z_{0} - x_{0}, z_{0} - y_{0})}{C_{K'}^{(2)}(z_{0} - x_{0})C_{K}^{(2)}(z_{0} - y_{0})} \quad [\text{with } x_{0} - y_{0} = \frac{T}{2}]$$

$$= \frac{3}{8} \frac{C_{K'QK}(z_{0} - x_{0}, z_{0} - y_{0})}{(\Phi_{K'}A_{0})(z_{0} - x_{0})|^{\text{tm}} (A_{0}\Phi_{K})(z_{0} - y_{0})|^{\text{OS}}}$$

$$\xrightarrow{x_{0} \ll z_{0} \ll y_{0}} \frac{3}{8} \frac{\langle \bar{K} | Q_{VV+AA}^{\Delta S=2} | K' \rangle}{(f_{K'}m_{K'})^{\text{tm}} (f_{K}m_{K})^{\text{OS}}} [\frac{Z_{Q}}{Z_{V} Z_{A}}]$$

$$= B_{K}$$

•
$$m_K - m_{K'} = \mathcal{O}(a^2)$$

• Factors $e^{-m_{\kappa'}(z_0-x_0)}$ and $e^{-m_{\kappa}(I/2-z_0+y_0)}$ cancel between

numerator and denominator.

• Same for factors $m_{K'}$ and m_K

Simulation Data

β	$a^{-4}(L^3 \times T)$		αµ _h	N _{meas}
3.80 (a ~ 0.10 fm)	24 ³ × 48 ″	0.0080 0.0110	0.0165, 0.0200, 0.0250 ″	170 180
3.90 (α ~ 0.085 fm)	24 ³ × 48 " " " " 32 ³ × 64	0.0040 0.0064 0.0085 0.0100 0.0040 0.0030	0.0150, 0.0220, 0.0270 " " " "	400 200 200 150 160 300
4.05 (a ~ 0.07 fm)	32 ³ × 64 ″	0.0030 0.0060 0.0080	0.0120, 0.0150, 0.0180 ″	200 150 220
$0 \text{ MeV} \lesssim M_{\mathrm{PS}}^{\ell\ell}$;	≲ 520 MeV ≲ 670 MeV	M _π L≩	≳ 3.3	<₽>

Signal quality

• Typical error of bare $B_K \sim 0.5 - 1.2\%$ • $B_{K}^{\text{bare}}(L = 24) = 0.585(5)$ *vs.* $B_{K}^{\text{bare}}(L = 32) = 0.592(5)$

tm vs. OS: O(a²) discr. effects

calculation at $(\mu_{\ell}^*, \mu_{h}^*)$ (fixed for all β) renormalised q-masses & in f_0 units.

Petros Dimopoulos

RI-MOM method

β	$Z_4^{\rm RGI}$ (M1)	Z_4^{RGI} (M2)	<i>Z</i> _A (M1)	<i>Z</i> _A (M2)	<i>Z_V</i> (WI)
3.80	0.591(18)	0.616(11)	0.746(11)	0.727(07)	0.5816(02)
3.90	0.617(10)	0.633(06)	0.746(06)	0.730(03)	0.6103(03)
4.05	0.693(10)	0.694(06)	0.772(06)	0.758(04)	0.6451(03)

• (M1): $\mathcal{O}(a^2p^2)$ fitted. • (M2): $\mathcal{O}(a^2p^2)$ not fitted.

< ≣ > _

4-f RCs: valence & sea chiral limit

GBP subtraction

$$\begin{split} \Gamma_{\mathcal{O}}(\mu, M_{\rm ps}; p^2) &= A + B\mu + C / [M_{\rm ps}^{\rm OS}]^2 & \text{for } \mathcal{O}_{n=1} \\ \Gamma_{\mathcal{O}}(\mu, M_{\rm ps}; p^2) &= A' + B' \mu + C' / ([M_{\rm ps}^{\rm tm}]^2 + [M_{\rm ps}^{\rm OS}]^2) & \text{for } \mathcal{O}_{n>1} \end{split}$$

Petros Dimopoulos

4-f RCs:

Z₁₁ vs. (ap)²

Petros Dimopoulos

4-f Renormalization Constants

Operator Mixing

β=4.05

" B_{K}^{RGI} " at fixed (ℓ, h) q-masses

calculation at $(\mu_{\ell}^*, \mu_h^*) \sim (40, 90)$ MeV.

<u>cut-off effects</u>: 'M1': ~ 7% 'M2': ~ 15%

$B_K @$ (physical point & CL)

Two methods:

• Use q-masses: need to know $\mu_{U/d}$ and μ_s at CL (i) interpolate B_K to μ_s ; obtain $B_K(\mu_\ell, \mu_s)$ (ii) extrapolate to $\mu_{U/d} \rightarrow B_K(\mu_{U/d}, \mu_s)$

Use pseudoscalar masses:

 (i) interpolate B_K to a number of reference pseudoscalar masses M²_{hh}
 (ii) extrapolate B_K(M²_{ℓℓ}, M²_{hh}) to the physical point M²_π
 (iii) interpolate to M²_{ss} = 2M²_K - M²_π → B_K(M²_π, M²_{ss})

Combined chiral + continuum fits

$B_K @$ (physical point & CL)

SU(2) Chiral fit formula

(C.Allton et al, 2008; Sharpe & Yang, 1996)

$$B_{K}(\mu_{u/d},\mu_{h}) = B_{\chi}(\mu_{h}) \left[1 + b(\mu_{h}) \frac{2B_{0}}{f_{0}^{2}} \mu_{\ell} - \frac{2B_{0}\mu_{\ell}}{32\pi^{2}f_{0}^{2}} \log \frac{2B_{0}\mu_{\ell}}{\Lambda_{\chi}^{2}} \right]$$

or
$$B_{K}(M_{\pi}^{2},M_{hh}^{2}) = B_{\chi}'(M_{hh}^{2}) \left[1 + b'(M_{hh}^{2}) \frac{M_{\ell\ell}^{2}}{f_{0}^{2}} - \frac{M_{\ell\ell}^{2}}{32\pi^{2}f_{0}^{2}} \log \frac{M_{\ell\ell}^{2}}{\Lambda_{\chi}^{2}} \right]$$

Fit the discretization effects

ъ

scale inputs for the physical point

• Use r_0 or f_0 for setting the scale

(calculated by a scaling analysis in the light sector)

 \implies Verify the *non* dependence (in practice) of B_K (\leftarrow dimensionless quantity)

Fits wrt q-mass (using scale from f_0)

RI-MOM RCs with $\mathcal{O}(a^2p^2)$ fitted

RI-MOM RCs with $\mathcal{O}(a^2p^2)$ not fitted

Fits wrt q-mass (using scale from r_0)

RI-MOM RCs with $\mathcal{O}(a^2p^2)$ fitted

RI-MOM RCs with $\mathcal{O}(a^2p^2)$ not fitted

Fits wrt pseudoscalar masses and RI-MOM RCs with $O(a^2p^2)$ fitted

physical point at: $M^2_{hh} \equiv M^2_{ss} = 2M^2_K - M^2_\pi$

Fits wrt pseudoscalar masses and RI-MOM RCs with $\mathcal{O}(a^2p^2)$ not fitted

physical point at: $M^2_{hh} \equiv M^2_{ss} = 2M^2_K - M^2_\pi$

$B_K @$ (physical point & CL)

B_K @ (physical point & CL): Result

 $B_{k}^{\rm RGI} = 0.733(29)(16)[33]$

- 1st error : (B_K -bare + Fit + RCs + scale input) uncertainty
- 2nd error : due to the difference (up to $O(a^2)$) of the RI-MOM RCs.

An alternative counting for the error budget:

- (B_K -bare + Fit) uncertainty ~ 2%
- (RCs + scale input) uncertainty $\sim 2.5\%$
- "systematic" uncertainty due to RI-MOM RCs \sim 2%

B_K world

(*): Continuum Limit result

No significant dependence on N_f dynamical quark flavours!

э

-

< □ > < 同 >

$K^0 - \bar{K}^0$ oscillation Beyond SM

in collaboration with

V. Bertone, R. Frezzotti, V. Gimenez, V. Lubicz, G. Martinelli, F. Mescia, GC. Rossi, S. Simula, M. Papinutto, A. Vladikas

Including $\Delta S = 2$ Supersymmetric Operators

The effective Hamiltonian takes the form:

$$\mathcal{H}_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^{5} C_{i}(\mu) \mathcal{O}_{i} + \sum_{i=1}^{3} \tilde{C}_{i}(\mu) \tilde{\mathcal{O}}_{i}$$

In SM case only \mathcal{O}_1 contributes.

$$\mathcal{O}_{1} = [\overline{s}^{a}\gamma_{\mu}(1-\gamma_{5})d^{a}][\overline{s}^{b}\gamma_{\mu}(1-\gamma_{5})d^{b}] \quad \tilde{\mathcal{O}}_{1} = [\overline{s}^{a}\gamma_{\mu}(1+\gamma_{5})d^{a}][\overline{s}^{b}\gamma_{\mu}(1+\gamma_{5})d^{b}]$$

 $\tilde{\mathcal{O}}_3 = [\bar{s}^a(1+\gamma_5)d^b][\bar{s}^b(1+\gamma_5)d^a]$

$$\mathcal{O}_2 = [\overline{s}^a(1-\gamma_5)d^a][\overline{s}^b(1-\gamma_5)d^b] \qquad \tilde{\mathcal{O}}_2 = [\overline{s}^a(1+\gamma_5)d^a][\overline{s}^b(1+\gamma_5)d^b]$$

$$\mathcal{O}_3 = [\overline{s}^{\alpha}(1-\gamma_5)d^b][\overline{s}^{b}(1-\gamma_5)d^{\alpha}]$$

$$\mathcal{O}_4 = [\overline{s}^a(1-\gamma_5)d^a][\overline{s}^b(1+\gamma_5)d^b]$$

$$\mathcal{O}_5 = [\overline{s}^a(1-\gamma_5)d^b][\overline{s}^b(1-\gamma_5)d^a]$$

(Gabrielli et al. 1996; Bagger et al. 1997; Ciuchini et al. 1997, 1998)

Parity-even parts of \mathcal{O}_i and $\tilde{\mathcal{O}}'_i$ coincide.

Lattice basis

Parity even operators

$$O^{VV} = (\bar{s}\gamma_{\mu}d)(\bar{s}\gamma_{\mu}d)$$

$$O^{AA} = (\bar{s}\gamma_{\mu}\gamma_{5}d)(\bar{s}\gamma_{\mu}\gamma_{5}d)$$

$$O^{PP} = (\bar{s}\gamma_{5}d)(\bar{s}\gamma_{5}d)$$

$$O^{SS} = (\bar{s}d)(\bar{s}d)$$

$$O^{TT} = (\bar{s}\sigma_{\mu\nu}d)(\bar{s}\sigma_{\mu\nu}d)$$

Lattice basis

$$\begin{pmatrix} Q_{1} \\ Q_{2} \\ Q_{3} \\ Q_{4} \\ Q_{5} \end{pmatrix} = \begin{pmatrix} O^{VV} + O^{AA} \\ O^{VV} - O^{AA} \\ O^{SS} - O^{PP} \\ O^{SS} + O^{PP} \\ O^{TT} \end{pmatrix}$$

LNF May 31, 2010

Ss basis

Through Fierz transformation

$$\begin{aligned} \mathcal{O}_{1} &= (\mathcal{O}^{VV} + \mathcal{O}^{AA}) \\ \mathcal{O}_{2} &= (\mathcal{O}^{SS} + \mathcal{O}^{PP}) \\ \mathcal{O}_{3} &= (\mathcal{O}^{SS} + \mathcal{O}^{PP} - \mathcal{O}^{T})(-\frac{1}{2}) \\ \mathcal{O}_{4} &= (\mathcal{O}^{SS} - \mathcal{O}^{PP}) \\ \mathcal{O}_{5} &= (\mathcal{O}^{VV} - \mathcal{O}^{AA})(-\frac{1}{2}) \end{aligned}$$

OS-setup brings to a continuum-like renormalisation pattern

$$\begin{pmatrix} \mathcal{O}_{1} \\ \mathcal{O}_{2} \\ \mathcal{O}_{3} \\ \mathcal{O}_{4} \\ \mathcal{O}_{5} \end{pmatrix}_{\text{REN}} = \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & Z_{32} & Z_{33} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{45} \\ 0 & 0 & 0 & Z_{54} & Z_{55} \end{pmatrix} \begin{pmatrix} \mathcal{O}_{1} \\ \mathcal{O}_{2} \\ \mathcal{O}_{3} \\ \mathcal{O}_{4} \\ \mathcal{O}_{5} \end{pmatrix}$$

(Donini et al. 1999)

LNF May 31, 2010

< 一 →

$\begin{aligned} \langle \bar{K}^{0} | \mathcal{O}_{1}(\mu) | K^{0} \rangle &= B_{1}(\mu) (8/3) m_{K}^{2} f_{K}^{2} = B_{K}(\mu) (8/3) m_{K}^{2} f_{K}^{2} \\ \langle \bar{K}^{0} | \mathcal{O}_{2}(\mu) | K^{0} \rangle &= B_{2}(\mu) \left[\frac{m_{K}^{2} f_{K}}{m_{s}(\mu) + m_{d}(\mu)} \right]^{2} (-5/3) \\ \langle \bar{K}^{0} | \mathcal{O}_{3}(\mu) | K^{0} \rangle &= B_{3}(\mu) \left[\frac{m_{K}^{2} f_{K}}{m_{s}(\mu) + m_{d}(\mu)} \right]^{2} (1/3) \\ \langle \bar{K}^{0} | \mathcal{O}_{4}(\mu) | K^{0} \rangle &= B_{4}(\mu) \left[\frac{m_{K}^{2} f_{K}}{m_{s}(\mu) + m_{d}(\mu)} \right]^{2} (2) \\ \langle \bar{K}^{0} | \mathcal{O}_{5}(\mu) | K^{0} \rangle &= B_{5}(\mu) \left[\frac{m_{K}^{2} f_{K}}{m_{s}(\mu) + m_{d}(\mu)} \right]^{2} (2/3) \end{aligned}$

Avoid systematic errors coming from the quark masses: construct appropriate ratios

$$R_{i} = \left(\frac{f_{K}^{2}}{m_{K}^{2}}\right)_{\exp} \left[\left(\frac{m_{K}}{f_{K}}\right)_{\operatorname{tm}} \left(\frac{m_{K}}{f_{K}}\right)_{\operatorname{OS}} \frac{\langle \bar{K}^{0} | \mathcal{O}_{i}(\mu) | K^{0} \rangle}{\langle \bar{K}^{0} | \mathcal{O}_{1}(\mu) | K^{0} \rangle} \right] \quad i = 2, \dots, 5$$

Then

$$\langle \bar{K}^{0} | \mathcal{H}_{\text{eff}}^{\Delta S=2} | K^{0} \rangle \propto C_{1}(\mu) \langle \bar{K}^{0} | \mathcal{O}_{1}(\mu) | K^{0} \rangle \Big(1 + \sum_{2,...,5} \frac{C_{i}(\mu)}{C_{1}(\mu)} R_{i} \Big)$$

(Donini et al. 2000)

Up to now, *only*, quenched results published.

(Allton et al. 1998; Donini et al. 2000; Babich et al. 2006; Nakamura et al. 2006.)

< E

▲ (目) ▶ (●) →

RCs matrix

RCs matrix in the lattice basis

$$Z^{\overline{\text{MS}}-2\text{GeV}}(\beta = 3.80) = \begin{pmatrix} 0.420(15) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.488(14) & 0.201(09) & 0 & 0 \\ 0 & 0.024(02) & 0.248(12) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.290(10) & -0.012(02) \\ 0 & 0 & 0 & 0 & -0.178(09) & 0.572(15) \end{pmatrix}$$
$$Z^{\overline{\text{MS}}-2\text{GeV}}(\beta = 3.90) = \begin{pmatrix} 0.438(08) & 0 & 0 & 0 & 0 \\ 0 & 0.503(08) & 0.200(06) & 0 & 0 \\ 0 & 0.025(02) & 0.271(07) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.313(07) & -0.012(02) \\ 0 & 0 & 0 & 0 & -0.206(06) & 0.595(09) \end{pmatrix}$$
$$Z^{\overline{\text{MS}}-2\text{GeV}}(\beta = 4.05) = \begin{pmatrix} 0.491(07) & 0 & 0 & 0 & 0 \\ 0 & 0.550(08) & 0.216(08) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.345(05) & -0.010(01) \\ 0 & 0 & 0 & 0 & -0.275(08) & 0.663(11) \end{pmatrix}$$

LNF May 31, 2010

< (□) < $K^0-\tilde{K}^0$ mixing in the SM and beyond from $N_f=2$ tmQCD

문 ▶ ★ 문 ▶

$R_{i=2,\dots,5}$: signal quality at $\beta = 3.90$

LNF May 31, 2010

Petros Dimopoulos

$R_{i=2,...,5}$ for $\beta = 3.80, 3.90, 4.05$

LNF May 31, 2010

Petros Dimopoulos

$B_{i=2,...,5}$ for $\beta = 3.80, 3.90, 4.05$

Petros Dimopoulos

fit function wrt $M^2_{\ell\ell}$	i	$\frac{\langle \mathcal{O}_i \rangle}{\langle \mathcal{O}_1 \rangle}$ from R-method	$\frac{\langle \mathcal{O}_i \rangle}{\langle \mathcal{O}_1 \rangle}$ from B-method	$B_i^{\overline{\mathrm{MS}}-2\mathrm{GeV}}$
quadratic	2	-14.3(0.8)	-16.6(1.6)	0.520(39)
	3	6.9(0.5)	8.4(0.7)	1.308(83)
	4	25.4(1.7)	30.2(3.2)	0.786(48)
	5	5.4(0.4)	6.5(0.7)	0.504(53)
linear	2	-13.1(0.4)	-16.6(1.2)	0.519(18)
	3	6.3(0.2)	8.4(0.4)	1.304(41)
	4	22.9(0.8)	29.8(2.5)	0.775(24)
	5	4.8(0.2)	6.4(0.5)	0.502(27)

Conclusions

• *B_K* (SM)

- $\mathcal{O}(a)$ automatic improvement
- renormalisation pattern without unwanted mixings
- ETMC result compatible with B_K-world
- \bullet Total uncertainty $\sim 4\%$ (apart systematics by the dynamical strange degree of freedom)
- $\bar{K}^0 K^0$ beyond SM
 - all operators O(a)-improved and continuum-like renormalisation pattern
 - good scaling properties
 - uncertainties of the ratios $\delta R_i \sim 5 10\%$
- Calculation with 2+1+1 dynamical flavours already started

Bckup: Fits wrt pseudoscalar masses and RI-MOM RCs with $O(a^2p^2)$ fitted - II

physical point at: $M^2_{hh} \equiv M^2_{ss} = 2M^2_K - M^2_\pi$

Bckup: Fits wrt pseudoscalar masses and RI-MOM RCs with $O(a^2p^2)$ not fitted - II

physical point at: $M^2_{hh} \equiv M^2_{ss} = 2M^2_K - M^2_\pi$

Petros Dimopoulos