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NLO features

@ Jet structure: final-state collinear radiation

Q@ PDF evolution: initial-state collinear radiation

@ Opening of new channels

@ Reduced sensitivity to fictitious input scales: (g, LF
w predictive normalisation of observables

© first step toward precision measurements
¢ accurate estimate of signal and background
for Higgs and new physics

@ Matching with parton-shower MC’s: MC@NLO




NNLO corrections may be relevant if

the main source of uncertainty in extracting info from
data is due to NLO theory: s measurements

NLO corrections are large:
Higgs production from gluon fusion in hadron collisions

NLO uncertainty bands are too large to test
theory vs. data: b production in hadron collisions

NLO is effectively leading order:
energy distributions in jet cones
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NNLO state of the art
@ Drell-Yan W, Z production

'F:.r total cross section Hamberg, van Neerven, Matsuura 1990
Harlander, Kilgore 2002

w fully differential cross section Melnikov, Petriello 2006
@ Higgs production
Harlander, Kilgore; Anastasiou, Melnikov 2002

b‘*-’-r tOtaI Cross section Ravindran, Smith, van Neerven 2003

w fully differential cross section
Anastasiou, Melnikov, Petriello 2004

Q@ eTe” — 3 jets

ba,,_, almost Comp|ete De Ridder, Gehrmann, Glover 2004-6




NNLO cross sections

Hamberg, van Neerven, Matsuura 1990
Anastasiou Dixon Melnikov Petriello 2003

Q@ Analytic integration
1‘ first method

flexible enough to include a limited class of acceptance cuts
by modelling cuts as * propagators”

Q Sector’ decomposition Denner Roth 1996; Binoth Heinrich 2000

Anastasiou, Melnikov, Petriello 2004

1‘ flexible enough to include any acceptance cuts

1‘ cancellation of divergences is performed numerically

=> can it handle many final-state partons !

Q@ Subtraction

1‘ process independent

cancellation of divergences is analytic
can it be automatised !




NLO assembly kit

— 3 Jjets

leading order | MEree|

NLO real

NLO virtual

d =4 — 2¢




NLO production rates

Process-independent procedure devised in the 90’s

Q slicing Giele Glover & Kosower
Q@ subtraction Frixione Kunszt & Signer; Nagy & Trocsanyi

¢ dipole Catani & Seymour
& antenna Kosower; Campbell Cullen & Glover

UZULO+0NLO:/dJTLr3L J. 4+ gNLO
m

O_NLO :/ dUT}}L+1Jm+1+/dUTYLJm
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the 2 terms on the rhs are divergent in d=4

use universal IR structure to subtract divergences
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the 2 terms on the rhs are finite in d=4




NLO IR limits

collinear operator
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performs double subtraction in overlapping regions




NLO overlapping divergences

C;»5, can be used to cancel double subtraction
Cir (ST - Cirsr) |M7(73)+2’2 =0
Sy (Cir — CinSp) [MP,12 =0

the NLO counterterm

1
A M2 =" [Z 5 Cir + (sr -3 CWST)} M iy )P

T 1#Tr

1#Tr
> has the same singular behaviour as SME, and is free of double subtractions
Cir (1= Ay) My =0 S, (1— A1) My [ =0

w) contains spurious singularities when parton s # r
becomes unresolved, but they are screened by J.,




Collinear mapping
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Collinear mapping

1
1 —

—— 0 @), Py =

momentum is conserved

mapping a la Catani-Seymour, but all momenta but the
unresolved ones are treated simultaneously like spectators




Collinear mapping
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Collinear mapping
1

phase space factorises




Soft mapping
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Lorentz transformation that preserves total momentum




Soft mapping
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phase space




NNLO assembly kit
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double virtual

real-virtual % ‘$>,A
double real % %




Two-loop matrix elements

two-jet production ¢4’ — qq', 97 — qq, 94 — 99, 99 — 99
C.Anastasiou N. Glover C. Oleari M.Tejeda-Yeomans 2000-01
Z.Bern A. De Freitas L. Dixon 2002

photon-pair production qq — y7v, 99 — VY

C.Anastasiou N. Glover M.Tejeda-Yeomans 2002
Z.Bern A. De Freitas L. Dixon 2002

ete” — 3 jets v — qqg
L. Garland T. Gehrmann N. Glover A. Koukoutsakis E. Remiddi 2002

V' +1 jet production ¢gg — Vg
T. Gehrmann E. Remiddi 2002

Drell-Yan V' production ¢qq — V

R. Hamberg W. van Neerven T. Matsuura 1991

Higgs production gg — H  (in the m; — oo limit)
R. Harlander W. Kilgore; C. Anastasiou K. Melnikov 2002




Collinear and soft currents

Q@ universal IR structure ==P> process-independent procedure

@ universal collinear and soft currents

() 3-parton tree splitting functions

R A S = ==

J. Campbell N. Glover 1997; S. Catani M. Grazzini 1998;A. Frizzo F. Maltoni VDD 1999; D. Kosower 2002

L) 2-parton one-loop splitting functions

S o SR o S © SV

Z.Bern L. Dixon D. Dunbar D. Kosower 1994; Z.Bern W.Kilgore C.SchmidtVDD 1998-99;
D. Kosower P Uwer 1999;S. Catani M. Grazzini 1999; D. Kosower 2003

@ universal subtraction counterterms

L) several ideas and works in progress

D. Kosower; S.Weinzierl; A. De Ridder, T. Gehrmann, G. Heinrich 2003
S. Frixione M. Grazzini 2004; G. Somogyi Z.Trocsanyi VDD 2005

© but devised only for e"e™ — 3 jets
A.De Ridder, T. Gehrmann, N. Glover 2005; G. Somogyi Z.Trocsanyi VDD 2006




NNLO subtraction

_NNLO _ / doBR T io + / AoV Tt + / A
m—+2 m—+1

m

the 3 terms on the rhs are divergent in d=4
use universal IR structure to subtract divergences




NNLO subtraction

:/ d0m+2Jm+2 +/ dam+1Jm+1 +/ do Y Jom
m-+2 m-+1 m

the 3 terms on the rhs are divergent in d=4
use universal IR structure to subtract divergences

NNLO RR,A
m-—+2

takes care of doubly-unresolved regions,
but still divergent in singly-unresolved ones

+ / 1[dam+1jm+1 do fj};f*ljm}
m-—+

still contains 1/¢ poles in regions away from |-parton IR regions

b oy [aoie s [anin] g,




2-step procedure

@ construct subtraction terms that regularise
the singularities of the SME in all unresolved
parts of the phase space, avoiding multiple

subtractions
G. Somogyi Z. Trocsanyi VDD 2005

Q@ perform momentum mappings, such that the
phase space factorises exactly over the
unresolved momenta and such that it
respects the structure of the cancellations

among the subtraction terms

G. Somogyi Z. Trocsanyi VDD 2006
G. Somogyi Z. Trocsanyi 2006

== Gabor’s talk



NNLO counterterm

@ construct the 2-unresolved-parton counterterm using the IR currents
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performing double and triple subtractions in overlapping regions
Cirs (1= Az) M, 5> = 0 Sre (1= Az) M) o =0
Cirjs (1= Ag) MY ,12 =0 Sirss (1= Az) IMU,17 =0




Triple-collinear mapping
1
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straightforward extension of NLO collinear mapping
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Double-soft mapping

ph = A[Q, (Q — pr — ps)/Ars| (D4 [ Ars) n#r,s

Are = 1= (W — Urs)

straightforward extension of NLO soft mapping




Double-soft mapping

ph = A[Q, (Q — pr — ps)/Ars| (D4 [ Ars) n#r,s

Are = 1= (W — Urs)

straightforward extension of NLO soft mapping

phase space




Double-collinear mapping
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Double-collinear mapping
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Soft-collinear mapping

composition of a collinear and a soft mapping

1 ) 1
(Pt + pt — @i QF) | ph =

7
— Dy,

T 1 — Oy

P = AJ1Q, (Q — D)/ As] (D7 /Xs),  n# 8

in this case, the order of the mappings is irrelevant




Soft-collinear mapping

composition of a collinear and a soft mapping
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Soft-collinear mapping

composition of a collinear and a soft mapping
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needs a NLO-type subtraction
between the m+2- and the m+|-parton contributions

NNLO NNLO NNLO NNLO
o = Ofmt2t T Ofmiy T 0(m}

NNLO RR,A,
O {m+2} —/ [d0m+2 Jmt2 = dop 57 I
m-+2

must be finite in = 1oRRAL g Jo AL g
the doubly-unresolved regions —A0pya Imt1 T A0 m

G. Somogyi Z.Trocsanyi VDD 2005-6
A takes care of the singly-unresolved regions and A;» of the over-subtracting




need to construct Ajs such that all overlapping regions in
| -parton and 2-parton IR phase space regions are counted only once

Cir(A1 + Ay — Ap)| M2 = Cir M,

SH (A1 + Ay — Ap)|ML 2 =S, M),
Cirs(A1 + Ay — Ap) [ M, [2 = Cipg ML), 2
Cirjs(A1 + Ay — A12)’Mm—|—2‘2 — Cir;js’MerzP

CS;rs(A1 + Ay — A12)’M£21r2’2 = CSZ-T;S\M,,(SZLQ]Q
S,s(A1 + Ay — A12)’M£21r2’2 = Srs‘Mfgjl_QP

the definition of A5 is rather simple
A M), = AjAg M) 2

but showing that it has the right properties is non trivial, and requires considering
iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits




|terated counterterms
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|terated counterterms

& the momentum mapping for each of the iterated counterterms is
built out of a composition of either the NLO collinear or the NLO
soft mappings, or of both

Q@ the treatment of colour in iterated singly-unresolved limits differs
for spin-correlated SME from that of colour-correlated SME

= no soft factorization formulae for simultaneously
colour-correlated and spin-correlated SME.
This was a no-go in the direction of generalised
dipole-type counterterms




needs a NLO-type subtraction
between the m+2- and the m+|-parton contributions
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A takes care of the singly-unresolved regions and A;» of the over-subtracting

g = [ {[aeR + [k
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needs a NLO-type subtraction
between the m+2- and the m+|-parton contributions

NNLO _ _NNLO NNLO NNLO
o = Ofmt2t T Ofmiy T 0(m}

NNLO RR RR,A,
Olm+2y = / [d0m+2 Jmt2 = dop 57 I
m-+2

must be finite in = RR,A RR,A
—do, 5t J +do, 512 J
m—+2 m+1 m-2 m
d=4

the doubly-unresolved regions
G. Somogyi Z.Trocsanyi VDD 2005-6
A takes care of the singly-unresolved regions and A;» of the over-subtracting
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remainder is finite by KLN theorem
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Conclusions

we devised a NNLO subtraction scheme for eT e~ — n jets

the calculation is organised into 3 contributions, RR, RV, VYV,
each of which supposed to be finite in d=4 dimensions

For ete~ — 3 jets the RR and RV pieces are shown to be
finite (see Gabor’s talk)

The VV piece still needs be done (but must be finite in d=4
dimensions, because of the KLN theorem)




