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Foreword

Scattering amplitudes are central to particle physics: their modulus square is the most important
ingredient in the computation of cross sections. In the last few years, they have been assuming an
increasingly relevant role also in gravitational scattering, e.g. in black-body scattering with emission

of gravitational radiation.

In particle physics, the traditional approach to the computation of an unpolarised cross section
is to square the amplitude and sum over the polarisations of the external states. The outcome is an
expression in terms of Mandelstam invariants and masses. The traditional workflow:

Lagrangian — Feynman rules — Feynman diagrams — scattering amplitude — squared amplitude
— cross section

has a bottleneck in squaring the amplitude, because if n Feynman diagrams contribute to the am-
plitude, n? terms will appear in the square of the amplitude. The computation becomes quickly

intractable as the number of external particles grows.

With gluons only, here is the number of Feynman diagrams in the amplitude as a function of the

number of external gluons:

H # external gluons H # Feynman diagrams H

1 4
6 220

8 34,300
10 10,521,900

Then we must square the amplitude: the number of terms becomes quickly intractable even with

state-of-the-art computers.

Fixing the polarisations ,i.e. for massless particles the helicities, of the external states, improves
a lot the computation: for a given helicity configuration, the amplitude is a complex number. Then

we just square that number.

Further, different helicity configurations do not interfere in the squared amplitude, summed over
the polarisations. So if an amplitude has m helicity configurations, the squared amplitude, summed

over polarisations, is the sum of m squared amplitudes at fixed helicities.

Last but not least, the amplitude will turn out to be much simpler than what might have been
guessed for the sum of n Feynman diagrams. For some helicity configurations in particular, the
maximally helicity violating (MHV) ones, amplitudes are just a monomial function of kinematic

invariants.

Amplitudes at fixed helicities were introduced in the 80’s. For massless fermions, they are con-
venient because helicity and chirality coincide, and chirality is preserved on massless-fermion lines.
That reduces the number of helicity configurations to be computed. Further, it was found that fixed

helicities were convenient also to represent external photons or gluons. Finally, what really changed



the game was the discovery in 1986 by Parke and Taylor [1] that MHV amplitudes for the scattering
of an arbitrary number of gluons are written as just one term, a rational function of kinematic in-
variants. Shortly after, it was realised that amplitudes are organised in complexity according to the
degree of helicity violation: the simplest are the MHV amplitudes(+=+ ... £ FF), the next to simplest
are the next-to-MHV (NMHV) (£ £+ ... &£ F F F), and so on.

Ultimately, one might want to re-think the role of quantum field theories in particle physics
emphasising on-shell structures, keeping in mind that the fundamental pillars which any possible on-
shell formulation of particle physics will share with quantum field theories are quantum mechanics
and special relativity.

In the first part of these lectures, we will review these developments and the subsequent event in
this story, the Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations [2].

Helicity amplitudes have started making their way in QFT textbooks. They can be found in
3, 4, 5, 6].

There are also dedicated reviews on the topic. The first, and still very informative, is [7] and
then the lectures by [8, 9, 10], the SAGEX reviews, in particular the first [11], and a review on
colour-kinematics duality [12].

Finally, there are a few books on scattering amplitudes [13, 14, 15].

I will pick up threads, ideas and examples from all of the sources above.



Chapter 1

Tree amplitudes

1.1 One-particle states

Amplitudes scatter particles, which are on-shell states. Let us see then how we can characterise
quantum one-particle states. They can be classified according to how they transform under the

inhomogeneous Lorentz (or Poincaré) group. In this presentation, we follow sec. 2.5 of ref. [16].

The components of the momentum commute with each other, so they can be chosen to express
a particle as an eigenvector of momentum. The discrete degrees of freedom (like helicity, or possibly

other quantum numbers) will be labeled by o. So the one-particle state can be written as |p; o) with
P*|p;o) = p*[p;o) . (1.1)
We assume that for every transformation A of the Lorentz group, we have a unitary operator U(A)

acting on the Hilbert space, such that U(A1Ag) = U(A1)U(Ag).

The Lorentz transformation properties of P* are given by
U(N)PFUYA) = A, *PY, (1.2)

which says that under Lorentz transformations P* transforms as a vector (remember that 7, A* ,A”, =
Npe and (detA)? =1 imply that A*, has an inverse (A~1)¥, = A* = n,,n"7A?,).

The effect of acting on |p; o) with the operator U(A) is to yield an eigenvector of P* with eigenvalue
Ap,

PrUA) Ipso) = UM)(U(A)P'U(N)) [p; o)
= UN)(AT)MP" |p;o)
= Ap'UA) [pso) (1.3)



So U(A) |p; o) must be a linear combination of Lorentz-transformed one-particle states,
U(A) |p;o) = C,pr (A, p) |[Aps o) (1.4)

where it is understood that the index ¢’ is summed over. The issue is then to express the coefficients

C, (A, p) in terms of the irreducible representations of the Poincaré group.

The only functions of p* which are left invariant by (proper orthochronous) Lorentz transforma-
tions are p? = m? and, if m? > 0, the sign of p°. For each p?, we can choose a reference momentum

k. such that p* = L*,(p; k)k¥ and we can define the one-particle states as

Ip;o) = U(L(p; k)) |k; o) - (1.5)
We can see how |p; o) transforms under general Lorentz transformations,

UA)|p;o) = UN) U(L(p; k)) |k; o)
= U(L(Ap;k)) U (L™ (Ap; k)AL(p; k) [k; o) (1.6)
w

Now, W = L~Y(Ap; k)AL(p; k) maps k to p = L(p; k) k, then to A p, then back to k, so it leaves k*
invariant,

Wk = k. (1.7)

The subgroup of the Lorentz group made of the Lorentz transformations which leave k* invariant is

the little group.

The action of W on the reference state |k; o) yields a linear combination of reference states,

UW(A,p; k) [k;0) = D, (W(A, p; k) |ks07) (1.8)

where the coefficients D_ . provide a representation of the little group. But,

U(A) [pyo) = U(L(Ap; k)UW (A, pi k) |k; o)
D, (W (A, p; k) U (L(Ap; k)) |k; o)
= D, (W(A,p; k) [Ap;o’) . (1.9)

Comparing it to eq. (1.4), we see that the issue of determining the coefficients C__/ (A, p) has been

reduced to the issue of finding the representations of the little group.

Therefore, a particle transforms under representations of the little group. An n-point scattering

amplitude M,, is then labelled by the one-particle states, |p;; ;) with i = 1,...,n. Poincaré invariance

10



implies that

M, (pis o) = P (P + -+ + p) M, (pis 04) (1.10)
M, (pi30:) = [[ D, (W) M, ((Ap)i ;). (1.11)
i—1

For massive particles, as reference momentum we choose k* = (m,0,0,0), and it is fairly obvious
that the only Lorentz transformations which leave invariant a massive particle at rest are the rotations.

So in four dimensions, the little group is SO(3), which is isomorphic to SU(2).

For massless particles, as reference momentum we may choose a particle in any direction, say in
the beam axis, so that k# = (E£,0,0, E'). Then it is shown in app. H.2 that the little group is 1.SO(2),
i.e. the group of two-dimensional rotations about the beam axis, SO(2), which is isomorphic to U(1),

complemented by two translations.

In D dimensions, these groups become SO(D — 1) in the massive case, and SO(D — 2) comple-

mented by (D — 2) translations in the massless case.

In the massless case in four dimensions, the generator of rotations about the beam axis is .J, and
its eigenvalue is the helicity,
J. ko) =0lk;o), (1.12)

while the generators of translations are ditched, because they generate continuous eigenvalues which
are not observed in Nature, so the eigenvectors are taken with null eigenvalues: see sec. 2.5 of ref. [16].

Thus, massless particles in four dimensions are labelled by their momentum and helicity.

1.2 Spinor-helicity formalism

Let us introduce the conventions that we use:
e Light-cone coordinates: p* = p® £ p?
e Complex tranverse momentum: p, = p + ip?

such that 2p- ¢ =ptq~ +p ¢t —piqi —pigL and p* =pTp~ — pipi.
For a light-like momentum: p?> =0 = p™p~ = p,p*.

The Pauli matrices are used in the combination:

10 00
0*=§(1+"3):<0 0)’ 025(1_03):(0 1)’

0 1 0 0
Ulzé(al—l—iaz):(O O)’ O'L:;(O'l—idz):<1 O)’

such that if o* = (1,5) and 7" = (1, —7), then

oL o _ . P~ =D
po=p1l—p-d=pto +p ot —pi7, —pio.= =,
—pL P

11



+ *
p-0=p°1+ﬁ-5=p+0++p0+mm+pjm=<p pf)-
pL p

Note that p? = det(p- o) = det(p-7) or that p?1 = (p-o)(p-7). So for p> #0, p-o and p- T
have rank 2; for p> =0, p- o and p - & have rank < 2.

1.2.1 Massless spinors

Let us introduce Dirac spinors u = <§_> with 2-dimensional Weyl spinors £, the helicity oper-
ator, j
=X i So <5 2) , (1.13)
2|p] 0 o
and spinors of definite helicity,
Ug = 1275% ui:ulq;75 : (1.14)

[0 o . (-10
’Y’u - (O’H 0> 9 7 - ( O 1) ) (115)
1 5 0 1—~5 _
Uy = 27 u = <€+> . u_ = 27 U = <§0> ) (1.16)

The massless Dirac equation is

such that

Y u(p) =0, (1.17)

which, in chiral representation, becomes

Dy (:ﬂ c;*‘) (z) _ <§Zi) —0. (1.18)

For massless spinors, the normalisation is & ¢é_ = ¢lé, = 2, where E = p° = |p]. From (1.18), we

then have to solve two systems of equations. The first,

—pL P

yields two equations for the components of £, which are linearly dependent. The solution is

£+ = eia <\/g¢p> ) er # 07 (120)

12



with _
oitr — br _ _pL _  PL
VotpT  Vpipt L

(1.21)

where &, is normalised in such a way that é’ié; = 2F and €™ is an overall arbitrary phase. The

Dot — <p+ pi) £ =0, (1.22)

pL P

£ =eif (_‘/Femp) . pt 40, (1.23)

second system from (1.18) is

with solution

VT

with e’ an overall arbitrary phase.

Neglecting the arbitrary phases, if p* = 0 the on-shell condition pTp~ = p, p* implies that p, =0,

(Y = VP or pht=
(D) (F) e

For p™ # 0, we have that

_ L (P _ L (7
5—}— - \/F (pJ_) ) 5— - \/]F ( p+ > : (125)

The phase convention has been chosen such that

so & and & become

4 = i0°¢", (1.26)
or inverting

& = —io%¢, . (1.27)
—i0? is the 2-dimensional realisation of the 4-dimensional charge conjugation matrix C' = —iv? (see

app. H.1) that maps a fermion of a given spin into the anti-fermion of the same spin (see e.g. [3], ch.
3). It is defined by C’fy;jC_l = —7,, which in 2 dimensions becomes 047,09 = af, a property of the
Pauli matrices we will use over and over.

Because positive u(k)u(k) and negative v(k)v(k) energy projection operators are both propor-

tional to ¥ for k* = 0, solutions of definite helicity,

1:|:")/5
2

£

u(k),  wvs(k) =

(k) (1.28)

can be chosen to be equal, uy (k) = ve(k). Note that for massless particles of positive energy, helicity

and chirality coincide. For negative energy, the helicity is the opposite of the chirality.

13



1.2.2 Spinor products

For p*, k™ # 0 and p°, k° > 0, we can construct right-handed spinor products,

Sl f t k*
(kp) = (7 [p") = m=(k)ur(p) = LK) () =~k +p1 T (1.29)
and left-handed spinor products,
+| — - T * pT * k+
[kp] = (k*|p™) = (k)u_(p) = EL(R)E-(p) = k1 e Rl (1.30)
The spinor products have the properties of:
1. Antisymmetry:
(pp) = pp] =0, (kp) = =(pk),  [kp] = —[pk]. (1.31)
In fact, using that £* = —io2£,, we have
(kp) = €L (k)€ (p) = (—io”€4 (k) €1 (p) = E1 () (i0%)é4 (p) (1.32)
since (0%)T = —02. Also < kp > is a scalar: its transpose is the same quantity. Therefore
(kp) = —€1 (D) (10°)64 (k) = (i0°€. (1) €4 (k) = € (D)4 (k) = —(pk),  (1.33)
i.e. the antisymmetry of o2 implies the antisymmetry of the spinor product.
2. Projection operator:
14+~
P) [ = (1:34)
thus
P= ‘p+> <p+‘ + ‘p_> <p“ . (1.35)
3. Squaring:
1 —
(pk)[kp] = tr(——pk) = 2p -k, (1.36)
which follows from multiplying two projection operators.
4. Complex conjugation:
(kp)" = [pk], (1.37)
which follows from the definition,
(k] = w(p)u-(k) = EL(p)E-(k) = L (K€L (p) = € (K)'€L(p) = (k)" (1.38)

It entails that (pk) = ,/5re’?, for some phase ¢.

14



5. Gordon identity:
(™[ [p*) = 2p", (1.39)

which follows from the definition, and from the explicit representation of the 2-dim spinors, e.g.
Pty ) = T ) s (p) = ELp)o" S, (p) (1.40)
then using eq. (1.25) we see that £i(p)a“£+(p) = 2p* (see eq. H.3).

6. Charge conjugation of currents:
H| k) = | o) (1.41)
which follows from using £* = —io?¢, and from the identity 090,02 = O'Z (see eq.(H.8)), e.g.

(k[ [p7) = ul (kv u_(p) = L (k)7 (p)

= (—io%e, (k) To" (—io?)*€% (p)

= &7 (k)io®a" (—ia?)E (p)

=& (k)(0") € (p)

= L p)ores (k) = (] k) . 4

7. Complex conjugation of currents:
((*] " K%)= (k=] [p*) . (1.43)

which follows from the definition, .g.
([ 1)) = (L wyae (b)) = €L (ke (p) = (k|7 [p7) - (1.44)

8. Fierz rearrangement:
(k=7 [p7) (| |a) = 2(ko)ap] (1.45)

which follows from using &, = i02¢* and from the Fierz identity for Pauli matrices,

2
(@)@ )i = 2(i0™)ab(i0%) 45 - (1.46)

15



Thus (see also eq. H.27)

(k|7 o) (0| ]a)

=& (k)ae_(p)el (v)7 .6 (q)

= (k) (0")aa" (D)€ (0)(7)5€" (¢)  in components

= 267 (k) (i0%) €™ (0)€" (p) (i) 13" (q)

= 261 (k)& (v)(—io*€L (p)€-(q)

= =26 (k)& ()L (p)€-(q)

= 2(kv)[qp] . (1.47)

Likewise
Wt K1) {at | [oF) = 2[pal (vk) . (1.48)

For v = ¢, we use the Gordon identity to get,

(k™| [p) = Gkalap],
(0| ¢ [k = Ipal(ak) - (1.49)

Note that the current is nilpotent,

(|7 [p))? = |7 [p5) [ = 4p* = 0,
<ki’ o ‘pi> <k:i’ Vu ’pi> =0. (1.50)

but
(K= 7 [p=) (65| )" = 20kp) [kp) = —2p - k. (1.51)

. Schouten identity:

Since spinors are two-dimensional objects,, any spinor |k™) can be written as a combination of

two spinors |¢F) and [v™), (kv) (qk)
Ry (gR)
k%) = (qu) )+ (qu)

which can be checked by contracting with (k~|, (¢| or (v~|. By contracting with another

v7), (1.52)

spinor (p~|, we obtain Schouten identity,

(pk)(qu) + (pg){(vk) + (pv){kq) =0, (1.53)

which is cyclic in k, ¢, v. Of course, the identity also holds for square brackets,

[pk][qv] + [pal[vk] + [pv][kq] = 0. (1.54)
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10. Momentum conservation

For an n-point amplitude, momentum conservation (with all momenta incoming or outgoing)

is Y, pi' = 0, which implies that
S IpH) (= 0. (1.55)
i=1

Contracting with two spinors of momentum ¢ and k, we obtain one more identity,
n

> lapl(pik) =0, pi#a.k. (1.56)

=1

Since we take all momenta of an n-point amplitude as, say, outgoing, 37, pf’ = 0, in the crossing
to the physical region, pi' +p5 = 31 4 p¥', the incoming partons must be continued to negative energy.
So, we can define the spinor product (pg) as in the positive energy case, but with p replaced by -p,

if p® < 0, and likewise for ¢, and with an extra overall factor of 7 for each negative energy,

u(—p) = iug(p) . (1.57)

Thus, spinor products and currents acquire a sign factor,

(kp)* = sign(k°p")[pk],
(p*] " k)" = sign(k°) (k*] " [p*) - (1.58)

Note that a different representation of the v matrices entails different Dirac spinors, but the spinor
products are the same, up to a phase factor overall (see, e.g. [8] where the Dirac’s representation of
the ~’s is used).

1.2.3 Spinor representations

At the beginning of this section. we wrote

+ *
p-0=p01+ﬁ-5:p+0++p0—l—pJ_UJ_—i-pj_UJ_:(p pL) (159)
br p

with det(p-7) = p%. Now (p-@)! = p-7, so any real 4-vector is bijective to a 2 x 2 Hermitian matrix.

Hermiticity is preserved under the mapping,
p-T—Tp-OT, (1.60)

with 7 an arbitrary complex 2 x 2 matrix. Further, det(p-&) = p? is preserved if |det(7)| = 1. Each
7 with det(7) = 1 defines a real linear mapping of p* with det(p - &) invariant, i.e. a homogeneous
Lorentz mapping,

mp-or — [AY(T)p"]5, . (1.61)
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7 with det(7) = 1 defines SL(2,C), however 7 and —7 define the same Lorentz mapping, so the
Lorentz group is equivalent to SL(2,C)/Zs, with 3 complex parameters = 6 real ones (see [16], sec.
2.7).

In fact, SL(2,C) = SU(2) + iSU(2). Since the finite dimensional representations of SU(2) are

equivalent to the finite dimensional representations of SL(2,R), in the literature we find the (finite
dimensional) representations of the Lorentz group expressed by the representations of SU(2)®SU(2),
or by the ones of SL(2,R) ® SL(2,R). Then the finite-dimensional representations are labelled by a

pair of indices (i,j) taking integer or half-integer values.

e (0, 1/2) labels the positive-chirality spinor representation, with spinor \,.

e (1/2, 0) labels the negative-chirality spinor representation, with spinor o

e The vector representation of the Lorentz group is the (1/2, 1/2) representation.

Any 2 x 2 matrix has at most rank 2, so a momentum p* may be viewed as the product of Weyl
spinors A, and p, in (0, 1/2) and spinors Xs and ji; in (1/2, 0). In fact, we can write p - &, with
det(p - o) = p?, as

Pai = (P e = P'L+ 5+ & = Aa(p)AL(P) + 11a(P) L (D) (1.62)

If det(p- o) = p*> = 0, the rank of p- 7 is less than 2. Any 2 x 2 matrix A whose rank is less than

v
VW VW
A—<1 1 1 2) : (1.63)
VoW1 V2a2Wo

which implies that det(A) = 0. In particular, we can write p- & in terms of A,(p) and Az(p) only,

v w
2 can be written as A = vwT, with generic v = < 1) and w = ( 1>. In fact,
2 w2

bl p

Pai = (0 T)as = Aa(P)AL(p) = (p+ pi) (1.64)

with

Aa(p) = \/% (i) . Aalp) = \/;T <§+> . (1.65)

Since det(p - o) = 0, its eigenvalues are u; = 0 and pus = pt 4+ p~ = 2E. The eigenvector
_ L (P
VP \pL

represents the projection onto the eigenvector associated to the non-null eigenvalue.

corresponding to pg is Ay (p) , with a suitable normalization. So (p - 7). = Aas

If the momentum p,,; is complex, it has three complex parameters, since there are four complex

components and one mass-shell condition, pTp~ = p,p*. The counting can be done otherwise: the
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spinors A, and A\, have each two complex parameters, but their product p,q is invariant under
Ao = Zhas da— 2 (1.66)

with z complex. For a complex momentum, A\, and A\, are independent. In order for the momentum

p* to be real, Ao = Al and thus 2z must be a phase, z = e%.

The map (1.66), which keeps p, invariant, is a little group map. As we said in sec. 1.1, the
little group is the subgroup of the homogeneous Lorentz group made of the Lorentz maps that leave

p* invariant, p* = A#p”. Under little group scaling,

Ao = €0, i — e N, (1.67)
the helicity operator,
1 0 ~ 0
h=2= Aai — )\af ) 1.68
s (Poan Vi) (1.68)

is invariant. h assigns helicity +1/2 to A, and helicity -1/2 to Xs. We can then define the helicity on

an n-point amplitude as

1 & 0 v 0
h 2 Z (Aw a)\ia /\m a)\id> ( 69)

=1

Likewise, we can write p - o as

P =(p- o) = N(p)\(p) = (p_ ‘?}) 7 (1.70)

—pL P

with

V)= (;T) V)= <;ﬁi> . (1.71)

Comparing to the Weyl spinors &1 introduced above, we see that

& (p)}e(0,1/2),
{X(p) =€ (p), Malp) =EL(p)} € (1/2,0). (1.72)

—
>
g
=
Il
ax
+
=
>
IS
s
S—
Il

y 0 —1
€W = b = = —io?. (1.73)
1 0

Mo =X, AT=€®N, A =€) N = ey, (1.74)

such that
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so €2 acts in the (0, 1/2), i.c. right-handed representation and ® acts in the (1/2, 0), i.e. left-handed

representation.

Note that
o )\, = e\ is equivalent to £ = io?¢*
o \t = edbS\B is equivalent to {_ = —io?&% .

The van-der-Waerden notation for the Weyl spinors A in terms of dotted and undotted indices,
is equivalent to the notation in terms of the Weyl spinor £. They are both used in the literature and

we will shuttle from one to the other.

Thus, the spinor products can be written as

(kp) = €' (k)€1 (p) = X (k) Aa(p) = A“(k)ea.bkb(p) = —%b(k)kb(p) = —A”(p)%b(k) = —(pk),
[kp] = €L (k)6 (p) = Ma(B)A*(p) = Na(K)e™ Ny (p) = =N (k)N (p) = =Xy (p)N"(k) = —[pk] (1.75)

where the antisymmetry is explicitly implemented through the €® tensors, just like it was through

io? for the Weyl spinors £, and the fact that the spinors are commuting objects.

In terms of A spinors, the Gordon identity is (see app. H.3)

(Pt [p*) = Xalp) (") Nalp) = 29",
(077" [p7) = A(0) (@) (p) = 2" (1.76)
In terms of A spinors, the charge conjugation
(7" |a7) = (g*[+"|p") (1.77)
ie.
L (p)a*e (g) = &1(0)0"E () (1.78)
becomes
X(p)(@)aaA" (@) = Xa(@) (") Na(p) (1.79)
where we use the identity (see app. H.3)
(ot)ie = e“b(a“)zg)eb“ (1.80)

which is equivalent to o?g*0? = (o).

One can work out the squaring as a product of two currents and using the Gordon identity,

) @ty = SN 0) @)X 0)As(a) 04 Nula) = 20+ g
= XA (P)Aa(9) M)
= (pa)[ap], (1.81)
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where we used the Fierz identity for Pauli matrices (Eu)aa(a“)i’b = 25252 and the spinor products.

Therefore,
(77" |p) (¢ |a™) = 2(padlap] - (1.82)

1.3 e et — u pu' scattering
We consider the amplitude for e”et — p~pu™ scattering at fixed helicities.

A -3
ny A

L/ N\ 4
Figure 1.1: eet — pu~ ' scattering.
4

We choose the momenta to be all outgoing, so that momentum conservation is sz‘ = 0. Ac-

i=1
cordingly, helicites are for all outgoing momenta, i.e. an incoming left-handed electron is labelled as
an outgoing right-handed positron, so e.g. the amplitude e; (—p1)ef(—p2) — pup(p3)ps (ps) becomes

My(17,, 26__,3:_,4; ), whose result is (see eq. H.4)

2 2
iMy (15,2034 4-) = i (24)[31] . (1.83)

- +
K K S12

We can also write it in terms of right-handed spinor products only (see eq. H.4),

t ( et e 73(1, ) j ) ? <]2><34> ( )
? 4( eT)r e 3# ? y2 ) ? ] 2 3 1 ( )

The amplitude above is the beginning of an infinite tower of amplitudes, called maximally helicity
violating (MHV) amplitudes, which are made of the four fermions above plus (n — 4) additional

positive-helicity gluons or photons, i.e. whose helicity configuration is (— — +...+), and which can be

n—2
written in terms of right-handed spinor products only. It is also the beginning of an infinite tower of

MHYV amplitudes made of the four fermions above plus (n — 4) negative-helicity gluons or photons,

whose helicity configuration is (+ + —...—), and which can be written in terms of left-handed spinor
n—2
products only. Of course, only four-point amplitudes, with helicity configuration (+ + ——) can be

both MHV and MHV.
We have computed the amplitude My(17,2-,37 4/}). four-point amplitudes have in principle

et “e— noo
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16 helicity configurations, however because helicity is conserved on massless fermion lines, e et —
p~pt has only four allowed helicity configurations. Further, they are all related by parity (P) and
charge conjugation (C) on either or both of the fermion lines. C swaps a fermion with its anti-
fermion. We can e.g. let C act on the muon line, My(17,,2,3" 4°.) = My(17,,2.,3".,4 ) =

po Tt s Fu—
M4(1:+, 2, 4;_ , 3;1). Then we can swap the labels 3 and 4, which is equivalent to flip the helicities
of particles 3 and 4. Thus we obtain
. T oo o g 2e?
ZM4(16+72677 M774IJ’+> = 287<23> [41]
12
= 22'627<23>2
(12)(34)
14]?
2ie” [ : 1.86
" 12)[34] (1.86)

Since for massless particles, helicity and chirality coincide, a parity transformation flips all helicities
and conjugates spinors, thus, under P, (pk) <> [kp] (we will explain the sign later). Thus, we obtain

: b o a4 2¢?
IMy(17,25 37 4%,) = i—[24](31),

e Pu—

S12
, Cood et g 2¢?
iMy(1,,27 37 4 ) =i—[23](41) . (1.87)
© ¢ K K 512
Finally, since s13 = s94, We can also write
My(1F,27,3%,47,) = 422713 (1.88)
c c K K 512
up to a phase ¢. Choosing the momenta,
plZ(anaan)a pQZ(anaov_E)7 p3:<E7E)7 p4:(E7_E)7 (189)

with |p3| = F and p3 - 2 = E cosf. Then

s12 = (p1 + p2)? = 4E°,
S13 — (]91 — 3)2 = (pQ —p4)2 = —2E2(1 — COS ‘9), (190)
= (

%
s14 = (p1 — P4)2 D2 — p3)2 = —2E2(1 + cosf).

Therefore . 0
Mu(1F,27 3% 47,) = e92e2 213 — _ivge2t — OBT (1.91)
c c K K $12 2

which vanishes in the forward limit 6§ — 0, since the total angular momentum S is not conserved in

the beam direction (incoming S is -1 and the outgoing S is +1).
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Likewise, we can write

. 0 1+ cosf
My(17,. 27 37 4%, ) = ¢ 9251 — _ o 922 T €OV
4( ety Ce=r O HJr) € € 1o € € 2

(1.92)

with a phase ¢, which is maximised in the forward limit § — 0, since S is conserved in the beam
direction (incoming S is -1 and the outgoing S is -1).

Finally, the other two helicity amplitudes, My(1,27, i 4:+) and My(1,,27, 3:, , 4/}), equal
the two above, up to a phase.

The cross section for e”e™ — p~p™ is proportional to the square of the amplitude. If the beam
(initial-state) and final-state particles are not polarised, which is the default set up in collider physics,
all the helicity configurations contribute to the amplitude. However, different helicity configurations

do not interfere, so the square of the amplitude equals the sum of the squares of the helicity ampli-

tudes,
do (et wpupt)ox > ‘M(e‘eJr — ,u_,u+)’2 (1.93)
dcos ™ ' .
with
_ N _ _ 2
My 20,30 4 = [Ma(1z, 2,3, 48] = e*(1 = cos )7,

M1t 20 3,400 = [Maz 2 30 4| = €' (1 + cos6)?. (1.94)

etr» e Y= Tt w0 Tt
So, we have

2 2
513 + S14

> ‘Z\/[(e’eJr — /f/ﬁ)f =g 2
hel S12

= 4e*(1 + cos ). (1.95)

1.3.1 e et — ¢g scattering

Likewise, one can get the amplitudes for e"e™ — ¢g scattering. We write the full amplitude as a

colour-stripped amplitude times an overall factor containing couplings and colour factors.

9 &f 93

SOEEERA Y’

Figure 1.2: e et — ¢q scattering.

Since we normalise the colour matrices in the fundamental representation as Tr(t*t?) = T,
with Tg = 1, we shall get a 1/4/2 factor in the Feynman rule for the quark-photon vertex, or the
quark-gluon vertex, in the colour-stripped amplitude. To compensate for that, the coupling g will be
replaced by v/2e for QED. So, we write the amplitude as

Mi(e™e™ = q7) = (V2e)*QuQu0i Au(e™¢™ = qq). (1.96)
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with @), and ). the quark and the electron electric charges, and with the colour-stripped A4 ampli-

tudes,
24)(31 ,
iA4(1e++,2;,3q+,4§) = z< )131] = iﬁe“ﬁ, (1.97)
512 512
23)(41 1
iAs(1h ;_,3;,4;)=z'< ) ]:isﬁew. (1.98)
512 512

1.3.2 eq — eq scattering

From the amplitudes for e"e'™ — ¢g scattering, we can obtain by crossing the amplitudes for eq — eq

scattering, fig. 1.3, necessary to compute deep inelastic scattering (DIS).
el
A\, wg gl ¢
¢ M'S h‘l e ef
6; k wa‘ k] -2 P{ Pl
I /" r’ h p
P

Figure 1.3: Crossing symmetry on e" et — ¢g scattering.

The squared amplitude for eq — eq scattering, summed over helicities, is (see Exercise H.5)

52 + u?
hX; M =8e'Q) —5—, (1.99)

where the s? term comes from the scattering of L(R)-handed electrons on L(R)-handed quarks, and
the u? term from the scattering of L(R)-handed electrons on R(L)-handed quarks.

In the parton model, the DIS cross section is

do 5 S 2 2
ddy =21 W[l +(1—vy) ]lexfz/p(x)Qz ) (1.100)

2

where is S is the hadron centre-of-mass energy, such that s = x5, x = is the Bjorken z, y is

P-4
the fractional energy loss of the outgoing lepton, and the sum is over the quark flavours. The two
terms 1 and (1 — y)? stem from the s* term and the u? term in eq. (1.99), respectively. Thus, we see
how the two different helicity structures of eq — eq scattering yield the y structure of the DIS cross

section.

1.3.3 ¢q — ({" scattering

Finally, by a trivial crossing of e"e™ — ¢g, (i.e. swapping initial and final states), one can obtain the
amplitudes for the production of a lepton pair in the ¢g - annihilation, in the collision of two protons,

which is called Drell-Yan scattering,
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Figure 1.4: Drell-Yan scattering.

1.4 Polarisation vectors

We consider now the emission of gluons or photons in a helicity amplitude. As we know, the physical
(or transverse) polarisation of a gluon or photon of momentum p and helicity h = + is given by a
4-vector €, (p, k), with respect to an arbitrary null vector k*, k* = 0, not collinear to p, p - k # 0,

with the usual properties, (see app. H.6)
(E(p, k) =T(p, k) and  F(p,k)-p=0, (1.101)

normalised as

' (p,k) - (" (p. k)" = 5", (1.102)

and sum over polarizations,

- v PUEY A+ pYRE
Do eh(p k)ey (p k) = —g" + —————. (1.103)
h D
A polarisation vector satisfying these properties is
LT T
e (p, k) = + 7 1) (see app. H.6) (1.104)

V2 (k| [p*)

If we take the momentum p in the z-direction p = (p,0,0,p) and the reference vector k as k =

(k,0,0,—F), so that p and k tag the light-cone directions, p* = 2p, k= = 2k, the Weyl spinors are

(V2 [0 (V2

Then the polarization vector is

€+*(p, ]C) _ <k_| Tu |p_> _ gT—<k’)6M£*(p) _ _\/mp <07 17 _i70) — _i (0’ 1,Z,0)* ) (1106)

g V2(kp) V2L (R)E () V2v/2kp V2

up to an overall sign, this coincides with the usual definition of right-handed polarisation vector.

Further, consider an azimuthal rotation by the angle ¢ around p. Then £_(p) in the numerator

picks up a phase e~*/2, £, (p) in the denominator picks up a phase €/*/2. Thus, *(p, k) gets the
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hase e7* | i.e. €/ (p, k) transforms by €, consistently with a right-handed spin-1 particle.
p T

Finally, in 2 x 2 matrix notation,

Jx _ (k[ vulp™) _ A (k) (Tu)aa" (p)
€, (p, k) = ﬂ(km = \/§<kp> ) (1.107)

Thus, using Fierz identity Ezd(au)bb — 20040

a~a’

(EJF*(p? k))l}b _ (€+* . O_)l}b _ )\a(k?l(/%lz?{;l;\a(p) (O_,u)l}b _ ﬁw . (1.108)
Likewise, )
(€7 (P k))aa = (€7 T)aa = —ﬂw. (1.109)
Choosing two different reference vectors yields
6+*(p, k’) . 6+*(p, Q) — <k‘17| ,YH |p7> o <q7| /YM |p7>

V2(kp) V2(qp)

_ Gk wlpT) (pa) + (a7 lp™) () (1.110)

V2(kp){(qp)

Using p = [p~) (p~| + [p*) (p™|, where [p*) (p™| does not contribute in this case, we obtain

— (kT [vupla®) +{a | yup 1K)
V2(kp){qp)
(¢ | Py + vup lET)
V2(kp){ap)
2 (gk)
"V2(kp)(qp)’

e (p.k) — e (p,q)

(1.111)
where we have applied charge conjugation on the first current (see app. H.9). We have found that
i (p.k) = ¢ (p,q) +puf (k. q,p) . (1.112)

In a gauge-invariant amplitude, with on-shell gluons and/or photons, replacing the polarisation

of a gluon or photon by its momentum yields zero by the Ward identity;,

A= A(p)eu(p) = A*(p)pu = 0. (1.113)
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Figure 1.5: Ward identity.

i.e. the amplitude is invariant under €, (p) — €,(p)+p,f(p). The change of the polarisation vector
between two different reference vectors (1.111) is of this type, so we conclude that in a gauge-invariant
amplitude or in fact in any gauge-invariant subset of an amplitude, we can choose the reference vector

as we like. The outcome will not depend on that choice.

An additional property, which is useful when computing amplitudes with external fermions, is

the contraction of the polarisation vector with the v matrix,

+x \/§ ¥ F + +
e (p,k)-:i:ww(‘p ) (KF| + |5 () (1.114)

which is shown in app. H.8.

An educated choice of the reference vectors can then simplify dramatically a computation. To
that effect, the following identities hold (see app. H.8),

ke (p,k) =0,

e (pi, k) - €"(pj, k) =0,
€™ (pi,pj) - € "(pj k) =0,
e (pik) - € (pjpi) =0,
¢ (0i ;) \p;t> =0,
(oF| ¢ (pips) = 0.

1.115
1.116
1.117
1.118
1.119

(
(
(
(
(
(1.120

)
)
)
)
)
)

Eq. (1.116) implies that it is convenient to choose the reference vectors of like-helicity gluons or
photons to be the same, and to equal (egs. (1.117) and (1.118)) the momentum of one of the opposite-
helicity gluons/photons.

Finally, let us consider a parity transformation P of the polarisation vector (1.104). By flipping

+* maps to —eT*. So, the bookkeeping for P is to flip helicities and conjugate spinors by

chiralities, €
the map (pk) — [pk| and multiply by -1 for each external gluon or photon. Since a scattering with
only fermion lines and no external gluons or photons has an even number of spinor products, and for
each external gluon or photon we add we should multiply by -1, a more concise bookkeeping for P is

to flip all helicites and conjugate spinors by the map (pk) — [kp].
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1.4.1 e e" — 7y scattering

In app. H.10, we apply the identities for the polarisation vectors above to compute the amplitude,

e; (=p1)es(—=p2) = v(p3)v(ps). The outcome is

24)2

My17.27.37.47) = -2 2 (24)°

4( etr“e—r Oy fy) € <13><23>7

My(15,2,2,35,47) = 0. (1.121)

These are examples of general features: The former is a MHV amplitude, and is written in terms of
right-handed spinor products only. The latter has only one negative (or only one positive) helicity,
and vanishes.
By Bose symmetry, My(17,2,-,37,47) is obtained from M,y(1},,2;,3%,47) by swapping labels
3 and 4. Therefore,
) (23)°

My(15,27,37,45) = —2e* . 1.122
4( et “e—r 9y 'y) € <14><24> ( )

The other two amplitudes are obtained by P,

My(17,,25,37,47) = —2¢2 24
etr Ce—r Py Hy [13][23] )
My(1_.,2% . 3%,47) = —262ﬂ (1.123)
A\ Loty 2=y Dy Fy [14][24] .
Squaring and summing over helicities, we get
2 2 1 29
> ‘M(e‘«fr — 77‘2 = 864M = 16e4+67082. (1.124)
hel 813514 1 —cos?d

The squared amplitude diverges as 1/t in the forward limit, § — 0, which is the expected behaviour

for quark exchange in the ¢ channel.

1.5 Infrared limits

1.5.1 e et — ¢gqg scattering

In app. H.11, we compute the amplitude for the production of a gluon and a ¢g pair in eTe™ an-
nihilation ey (—p1)ek(—p2) — qr(p3)gr(pa)d, (ps), which is relevant for 3-jet production in ete”
annihilation, and in the crossed channels for radiation emission in Drell-Yan production and in DIS.

For the helicity configuration,
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Figure 1.6: ez (—p1)er(—p2) — qr(p3)9r(pa)d; (ps) scattering.

the result is

Ms(e”et = qqg) = (V2€)’QyQeg(T%)55 As(e”e™ = qq9), (1.125)
with
- + 9= at gt £ (25)%
i) As(1h,20 3F 4t 5oy = - (1.126)

(12)(34)(45)
The amplitude with the negative-helicity gluon can be obtained by charge conjugation C and parity

P. Let C act on the electron and the quark lines, A5(17,2,-,3F,4F,57) = A5(17,2.,,37,45,5.) =

As(2, 1:_, 5;,4:;, 33’). Then we can swap the labels 1 <» 2 and 3 <> 5, which is equivalent to flip

the helicities of 1 <+ 2 and 3 < 5,

) _ (13)?
A5(1e+’2:*73q’4;75g) :—m (1127)
Then we apply parity P,
} o 132
ZZ) A5(1:+726*73(J1r’4g’5ﬁ) = —m (1128)

Note that by charge conjugation on the quark line only, i.e. by swapping labels 3 and 5 on eq. (1.126),
we get the amplitude

+ 9= 9= 4+ 5+ _— <23>2
1i1) A5(1e+>23773q’49’5ﬁ) - _m
(23)?
~ 12} @3] (129)

while by charge conjugation on the electron line only, i.e. by swapping labels 1 and 2 on eq. (1.126),
we get the amplitude

_ _ (15)2
As(15+,25,37.4,,57) = (12)(34)(45) (1.130)
then applying P, we get
. Sl [15]2
Z'U) A5<1:+7267’ q,4g,5;) = —m (1131)

Thus, we have computed the 4 different helicity configurations of the final state by actually computing
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only one,
et e
As(1, 2,3, ,4,,57), As(11,2..,3,,4,,57).

As(L5, 20,85, 45,57),  As(Lh.2,37,4,,57)

et e
We will use their explicit values in order to compute the soft and collinear limits

1.5.2 Soft Limit

Note that eq. (1.126) can be written as
25)2 35
(25) (35) (1.132)

) A5(1:+’26_"3q+’4;’55):_<12><35> (34)(45)

In the limit that the gluon becomes soft p, — 0, the amplitude is singular, it goes like 1/p, and this

product can be interpreted as the non-radiative amplitude that we computed in eqs. (1.84), (1.85)

and (1.97),
o I ST i ks N ./ L. (1.133)
et fem P Ta ) T 9y 35) T [12][35] '

times an eikonal factor,
35)
S(3%,47,57) = <7 1.134
345 = s (1134)

The amplitude with the negative-helicity gluon on the same quark line (1.128) can be written as

[132 _[35]

i) As(15,27,37,4.,50) = —
i) s(Levs 200342455 5q) [12][35] [34][45]
= A4(1;,2;,3;,5g) -S(3%,47,57). (1.135)

with -
S(37,47,57) = [3£l] [15] : (1.136)

Likewise, using egs. (1.86) and (1.98), the amplitudes we computed in egs. (1.129) and (1.131) can

be written as
o (23)? (35)
i) As(Le203,045059) = —ores B )
1+ 9 3- 51’) . 5(37’4+’ 5+) . (1137)

= A4( etr“e—1Yq 1 Yg

with a5
(35 —5(3%,4%,57). (1.138)
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and

N GO
) As(Levs20:3004555) = ~Foi5] " Balas
= A15,27,37,58) - S(37,47,5) . (1.139)
with 35)
S(E747,57) =~ = —5(35,4557). (1.140)

Apart from a sign, which is consistent with charge conjugation, i.e. swapping of labels 3 and 5,
or otherwise with reflection identity, that we will define later, we see that the eikonal factor is

independent of the helicities of 3 and 5.

These are general features. The soft-gluon limit of an n-point tree amplitude is
A1, p, 8, q,...,n) = S(p, 55, Q) AT (1, ... p,q, ...,n) (1.141)

where the eikonal factors can be taken to be

S(p,st,q) = ﬂ for the positive helicity gluon , (1.142)
(ps)(sq)

S(p,s™,q) = — P for the negative helicity gluon , (1.143)
[ps][sq]

where we have taken S(p, s™,¢) with a minus sign because parity maps S(p, s*,q) to S(p, s, q).

The eikonal factor is universal: it does not depend on the parton flavour (be quarks or gluons) or
the spin of the emitters p and ¢ (in fact, not even on the magnitude of the momenta p and ¢, since the
eikonal factor is degree-zero in p and ¢; it depends only on their directions). The spin independence
arises from the classical nature of the soft gluon: since its momentum vanishes its wavelength is very

long, and it cannot resolve the details of the scattering process which has emitted it.

In QCD, the soft emission factorises, e.g. the emission of soft gluons from the quark-photon vertex

is

¥k
| Q«S + P‘,S‘ ﬁ
oG P’/{ P

Figure 1.7: Gluon emission from quark-photon vertex.

p-e(s) p-els)
p-s p s

Mg = —g ( ) B (e u(p), (1149

where I'* represents the quark-photn interaction. Let us check that this is precisely what we are

31



getting. Suppose the gluon of momentum s has positive helicity, and the reference vector is g,

poet(s) poet(s)  AqlplsTy  lalplsT)

p-s p s p-svV2(gs) P -sV2(gs)
_ V2l V2]
(sp)[ps]{qs)  (sp")[p"sT(gs)
_ V2 (ap)(sp) — {ap) (sp)
(gs) (sp){sp’)
V2 (%) (0'p)

use Schouten identity = -

(g8) (sp)(sp’)

7

— 2 {pp

(1.145)
which is, up to the v/2, our eikonal factor.

1.5.3 Collinear limit

Next, we consider the limit as gluon 4 becomes collinear to the quark 3, ps//ps. This limit is also
singular, since the momentum P = p3 + p4, of the quark before emitting the gluon, i.e. of the “quark
parent”, is also going on shell, P2 = 2p; - p; — 0. We may parametrize ps3 and p, as p3 = zP and

ps = (1 — 2)P. Then using eq. (1.126), we have

+ q 3t + P R

b 3
3¢t g %l ® :_(I:
: 3 P 4+

17 §5°

Figure 1.8: Collinear limit in ete™ — ¢gg scattering.

. 25)2 1
i As(17 .27 .37 47 52) = — < 1.14
i) Mpg]|py (14,2, 13q 44555 ) (12)(P5) \/m<34> 7 ( 0

since the spinor product scales like the square root of the momentum. The five-point amplitude has

factorised in the non-radiative amplitude (1.133),

4 oo L (25)2 B [1P)?
A5 20 PfL5D) = ~ @25 = AP (1.147)

times the splitting amplitude (note the opposite helicites for leg P),

1
Split_(37,4}) = ———x——. 1.148
pl—( q g) m<34> ( )
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In order to determine the splitting amplitude for the negative-helicity gluon, we take eq. (1.128) with
p3 = zP and py = (1 — 2)P. Then

N _ oo [1P]? z
i1) hn1p3||p4A5(1:+,26,,3;,4g,56) = —[12”]35] \/E[?)‘l]
— A(15,2,, PF5o)Split_(37,47). (1.149)
with
. _ z
Split_(3},4,) = ———— (1.150)

VT—p4

Likewise, we can take the collinear limit of the other two amplitudes we computed in egs. (1.129)

and (1.131) which have opposite helicities on the quark line,

N o (2P)? z
i) limy,)p, As(15,2,2,3,,4,,57) = — (120 (P5) V= 2(30) (1.151)

which can be written as the non-radiative amplitude out of egs. (1.86) and (1.98),

N (2P)? B [15)
A5, 20 Py 5E) = 02 P5) = TaliPE (1.152)

times the splitting amplitude,

z
Split, (3;,4)) = ———r——, 1.153
plits (3, 45) = =~ A= (1.153)
which is the parity conjugate of Split_ (3,4, ).
v) Timy, o As(1h, 27 3,47 55 [15] !
w)  lim - = _
pallpa 55ty Zem P R0 T [12][P5] VT — 2[34]
= A,(15,2., P, 57)Split, (3,,4,), (1.154)
with 1
Split, (3,,4)) = ————, 1.155
pa +( q> g) \/E[?)Zl] ( )
which is the parity conjugate of Split_(3],4/).
These are also general features: the collinear limit of an n-point tree amplitude is
: tree Ak o Ag _ : Ak o Ag tree Ap
limy g AL (1, o kY, g7, on) = Y Split_y (KM, ¢™)AT(1, ..., PP, . n). (1.156)
Ap=1%

The splitting amplitude depends on the nature and the spin of partons k and ¢. It features a sum
over the helicity of the parent P, with the convention that the helicity of P is reversed between
the (n — 1)-point amplitude and the splitting amplitude, since helicites are taken as all outgoing on
(splitting) amplitudes. However, in the case of a quark parent P, like in our specific case above,

helicity conservation on the quark line implies that A3 = Ap, i.e. only one helicity of P survives in
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the sum. Further, in QCD the parton flavour of the parent P is uniquely determined by the flavours
of the collinear particles ¢ — qg, § — Gg, g — qq4, g — ¢gg.

The splitting amplitudes are basically the square roots of the polarised Altarelli-Parisi splitting
functions which appear in the DGLAP evolution equations. In particular, using the four splitting
amplitudes we computed above, we can find the z dependence of the unpolarised P,,(z) splitting
function,

Pu(z) o [Split_(3F,45)[ + [split_(37,4,)[" + |Split. (3, 47)|" + [Split, (3, .4, )]

qa’ g Q’g q’7g

1 22 1+ 22
— . 1.157
X 1—z+1—z 1—=2 ( )

Including the 6(1—2) term from virtual gluons, and the + distribution to deal with the soft divergence

as z — 1, the complete P, (z) is
(1.158)

The splitting amplitude Split(k, ¢) is proportional to either 1/(kq) or to 1/[kp|, i.e. we can say
in general that Split(k,q) o< €/, /Skq, where ¢ entails a phase factor. Note however that had we
computed the splitting amplitude in a scalar theory, like ¢3, we would have obtained Split(k,q) o

]-/Skq-

Figure 1.9: Split amplitude in ¢* theory.

In the case of a massless gauge theory, like QCD, the collinear singularity is softened because
helicity, or angular momentum, is not conserved in the splitting process. In fact, in the quark-gluon

splitting,

Figure 1.10: Quark-gluon splitting.

the initial helicity is 1/2 and the final helicity is -1/2, 3/2 or the initial helicity is -1/2 and the
final one is -3/2, 1/2. Likewise, in a gluon splitting
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+{ &l
l
L

—

Figure 1.11: Gluon-gluon splitting.

the initial helicity is +1, and the final helicity is 2,0,-2.
The splitting function P, which is proportional to |Sp1it|2, goes like 1/sy,. After phase-space
integration, that leads to logarithmic collinear divergences. In a scalar theory, the splitting function

goes like 1/ siq, leading to power-like collinear divergences.

1.6 ¢q — (n —2) gluon scattering

1.6.1 Colour decomposition

For QCD, or SU(N.) gauge theories, helicity amplitudes have another great advantage: one can
organise the amplitude as a linear combination of colour factor times partial (a.k.a. colour-ordered,
colour-stripped, or sub-) amplitudes. Linear independence and the gauge invariance of the whole

amplitude imply that the colour-stripped amplitudes are gauge invariant.

In the fundamental representation of SU(N,), the algebraic structure is given by the relation

[t %] = ifet¢, where the traceless hermitian N, x N, generator matrices (t%)! carry quark indices

i,j =1,.., N, and a gluon index a = 1, ..., N>—1. The t*’s are usually normalised by Tr(t*t") = Tr§?,
with T = 1/2. Firstly, in order to avoid, a proliferation of v/2’s in the sub-amplitudes, we rescale
the t's, T* = /2t such that Tr(T*>T") = 6. Thus, the Feynman rule for the quark-gluon vertex

changes as

~ a \ n as
b%(t )EJ = _\Il%_ (7 7:3'
Figure 1.12: Feynman rule for the quark-gluon vertex.

In terms of T7s, the SU(N.) algebra is given by [T, T = i1/2f%°T*, i.e. such that the structure
constants f¢ are given by

fabe _ _\;ETqua’m 7). (1.159)

The f%¢’s appear in the Feynman rules for the 3-gluon and 4-gluon vertices. The idea is to replace
systematically in every Feynman diagram all the f%¢’s in terms of T%’s, using the relation above.

For example, the Feynman rule for the three-gluon vertex is
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e
B -
i be abc v v v
gl (k —a)" + ¢""(p = k)° + 9" (¢ —p)*] . (1.160)
Using eq. (1.159), we can devise the colour-ordered Feynman rule
fcig; —\Z/g— tr(TT°T) [g" (g — k)" + " (k = p)" + ¢" (0 — ¢)"]  (1.161)
q -» 2

i be : :
+ non-cyclic permutation

The simplest example we consider is gg — gg scattering,

Jo a.(-p) 3LP) = 3(R)3(R)
2 : N 7
. k4
/9 ! . ’):523

Figure 1.13: qq¢ — gg scattering

The first two (Abelian) diagrams yield 7*7% and T*T* colour factors; the third (non-Abelian)
diagram has a colour factor f%¢T. One could replace iy/2f%%¢T¢ = T®T% —T%T% (as e.g. done
by Peskin in his lectures) and immediately get the 77T and T%T colour orders, which shows

that the amplitude can be written in terms of sub-amplitudes as
M(151,2.%, 30, 4g) = g°[A(1]1, 2,7, 3, 4) T8 T™ + A(151, 2,7, 44, 3,) T T*] . (1.162)

Although slightly longer in this case, a more general procedure is to use the colour-ordered Feynman

rule for the 3-gluon vertex, and then use the Fierz identity for SU(NV,.) matrices,
i o -y 1 .
(T (T%)i; = 61703, — 77000 (1.163)

whose ('t Hooft) graphical representation is

oL =T - D&

Figure 1.14: 't Hooft graphical representation.
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Then the colour-ordered factor of the non-Abelian piece is
(ORI T'T) = Te(I'T°T%)] = (TR ((T°T") — (TT")3)
0

arpb bra arb
— (7T — (T"T*)¥ — = T8 (1.164)

and we obtain the amplitude in terms of colour-ordered amplitudes as above. This procedure can be
used, though, for ¢qg — any number of gluons. For three or more gluons, we also need the four-gluon

vertex,

B od _iQZ[fabEfcde(gupgua o g,uagup)
L 7 ace e v _po o v
I\t + [l e (g g7 — g7 g
Ve < ade rbce v _po vo
. (g g — g g7 (1.165)

written in colour-ordered form. Each product of two f’s can be unfolded by applying twice
eq. (1.159). Then

fabefcde — —;Tr([T“,Tb] Te)TI'([TC,Td] Te)
0
= _;(Tr([Ta,Tb][TC,Td])—]1VTr([T“ TYEr TC,Td])), (1.166)

where in the second line we used the SU(N,) Fierz identity (1.163), so a product of traces can be
written as a single trace. Unfolding the trace, and repeating the same procedure for f2¢ fb4¢ and

fade fbee we obtain the colour-ordered Feynman rule of the four-gluon vertex,

A a’d 7 2
g a C vo o Vo v loa
%;« - 7tr[T T'TT?) - (29" 9" — g"7g" — g"'¢")  (1.167)
?
P

-+ 5 non-cyclic permutations

Given the generic strings of 7' matrices, 71 and 7o, using the SU(N,) Fierz identity (1.163), one

obtains the following useful colour identities,

i) Te(nT)Te(nT?) = (n)h (T} (r)2 (T2
— Ti(nim) - ;CTI«(H)TWQ). (1.168)

it) Te(nTmT) = (r)2(T9)i ()it (T)
_ Tr(Tl)Tr(TQ)—]\lchr(ﬁTQ). (1.169)
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N2 -1
N,

Finally, using (T°7T°)? = C;6;2, where Cy = , we have the identity

N2 -1
iti) Tr(mTTr) = —=<

Tr(m72) . (1.170)

However, in the two previous cases where we used the SU(N,). Fierz identity, egs. (1.164) and
(1.166), the 1/N, term dropped. The 1/N,. term makes the SU(N.) generator matrices traceless.
Since U(N.) = SU(N.) x U(1), the additional U(1) generator is proportional to the identity,

w1
(1;7V) = TW&’?’ (1.171)

such that the U(V,) Fierz identity,

(T2 (T)s = olialz (1.172)
differs from the SU(N.) Fierz identity (1.163) only by the 1/N. term. The U(1) generator (1.171)
commutes with SU(N,), so it can be thought of as a photon, which is colourless and does not couple
to gluons. That is why the 1/N, term dropped in the usage of the SU(N.) Fierz identity above, and
it will drop in all only-gluon amplitudes or in the ones for gg — any number of gluons. It can survive
only if a gluon is attached to quark lines on both ends. So it contributes only to the amplitudes with
at least two quark lines. As we will see, the U(1) generator can also be used to replace gluons with

photons.

Using the colour-ordered Feynman rules of the 3-gluon and 4-gluon vertices, and the SU(N,)
Fierz identity, it is possible to show that the general colour decomposition for the amplitude of ¢qg —

any number of gluons can be reduced to a single string of 7% matrices,

MY, 2, By i) = g7 YD (T8 T EATC(10, 20 0(39) - o(n™)), (1173)

7%
UESn—Q

where the sum is over the (n — 2) permutations of the gluon labels, and the \’s label helicities. The

work is then all in computing the sub-amplitudes AL*(131,2,%,0(3%) - - - o(n*")).

1.6.2 qq — gg scattering

As we said above, for n = 2, the colour decomposition is given by eq. (1.162). In app. H.12, we

compute the sub-amplitudes,

AYee(1F,2,,35,4,) =0, (1.174)
tree 1+ + 4=\ <24>3<14>

Alree(1r,2,,35.4,) = 12) (23) 34 (1) (1.175)
tree 1+ + <23>3<13>

Aee(1r,2,,3,,4)) = 12) (23) (34 (41} (1.176)
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Egs. (1.175) and (1.176) are MHV amplitudes for qg — gg. They can also be written as MHV

amplitudes, i.e. in terms of left-handed spinor products [ ] only. Note that A7¢(1},2.,3},4,) and

Ai“e(léf, 2,,3,, 4;) are two distinct colour-ordered amplitudes, not related by Bose symmetry.

The non-vanishing helicity configurations are

b o (244 (24)°(14)
M(17.2;,37,45) =g [<12><23><34><41>T T ) Ay e

T“T], (1.177)

where we got the second term, A(11,2;,4,,3F), from A(11,2,,3,47), eq. (1.176), by swapping

qr=q’ 7g’~g qr=qr7g’ g
labels 3 and 4. Likewise,

MF 2 3 44 = [ 2 g, (23)°(13)

02030 4) =9 [<12><23><34><41> <12><24><43><31>TG4T%]' (1.178)

Note that, as colour-dressed amplitudes, M (17,2, 3, 4,), eq. (1.177), and M (17,2.,3.,47), eq. (1.178),
are related by Bose symmetry, by swapping labels 3 and 4.

By parity, we obtain the other two amplitudes,

2

o - - 12
(M7, 28,3, 40 = |M(AF,2;,35,4))] (1.179)
_ .2 o 2
\M(lq,zj,:sg*,zlg)\ = 'M(lj{,2q .3, ,4;)] (1.180)
Summing over helicities, the squared amplitude is
N2 _1)242 2 2 2
S M (120,30 4,) = gt [p R WS Sy e gy St Sy (1181)
hel NC 513514 512

(see app. H.13), or averaging over initial colours and helicities, i.e. dividing by 4N?, the averaged

squared amplitude is

o N2 -1 2 .2 2 N2 -1 2 2
Z]M(1q,2q,3g,4g)\2:g4[( e~ U shy e N 513 £ 5147 (1.182)

2
hel 2N§ $13514 NC 512

The squared amplitude is symmetric under s;3 <+ s14 or ¢t <> u, exchange.

1.6.3 MHYV amplitudes

Next, we consider the n-point amplitude for gg — (n—2) gluons. Using the same identity as for two

equal-helicity gluons (1.116), it is easy to show that

Alree(1£ 9F 3% n¥) =0, (1.183)

qrTqr7gr g
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for all equal-helicity gluons. The two MHV amplitudes for qg — gg, egs. (1.175) and (1.176), are

extended to an arbitrary number of gluons. The amplitude for all positive-helicity gluons but one is

tree 1+ P (21)3(14)
Al (15,2235 i ynd) = T3 (= Tyl (1.184)

where ¢ labels the only negative-helicity gluon. Conversely, the amplitude for all negative-helicity

gluons but one, is a MHV amplitude,

AT (1F,20 .35 ooy ey

qg°7q’7g>

(1.185)

Il

|
—
~—
3

where ¢ labels the only positive-helicity gluon.
It is apparent that MHV or MHV amplitudes for ¢ — any number of gluons can have poles only
in s19, $23, .-+, Sp_1, Sn1- Lhere are no poles in, say, si3 or si4. Tree amplitudes have factorisation poles

only when an intermediate state P goes on-shell,

Figure 1.15: Multi-particle factorisation.

In a colour-ordered amplitude, particles must be cyclically adjacent in order to produce a pole.
That is why poles in, say, s13 do not appear in A(lq ,28,3g, -, ng), whatever are the gluon helicities.
In particular, for MHV amplitudes, there are also no multl—particle poles, i.e. poles of the type

S19..m = (k1 + ... + kp)?, with m > 3. We will explain this later.

1.7 (Gluon amplitudes

1.7.1 Trace-based colour decomposition

Using the colour-ordered Feynman rules of the three-gluon and four-gluon vertices, and the SU(IV,)
Fierz identity to reduce any product of two traces to a single trace, it is possible to show that the
general colour decomposition of an n-gluon tree amplitude can be reduced to a single trace of T

matrices,

M:lree(lg’ o ,ng> _ gn72 Z TI”(Ta‘Tl .. 'TaJ")AZee(O'(l/\l) e O-(n)\n)) ’ (1'186)
UESn/Zn

where the sum is over the (n — 1)! non-cyclic permutatons of the gluon labels. Z,, is the subset of

the cyclic permutations, which leave the trace invariant.
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Hence also the colour-ordered amplitudes:
i) Alree(g(1*) - - - g(n?")) are cyclically invariant.
In order to get rid of the cyclic invariance in the colour decomposition (1.186), one could e.g. fix the

position of gluon 1 and permute all the others,

MIee(1,..on) =g¢"2 Y Tr(Tr - T%n) AV (1M6(22) - - o(n™)), (1.187)
O'ESnfl
where we drop the gluon index, when dealing with gluons only.

Examining the Feynman diagrams which contribute to each sub-amplitude, one finds that sub-

amplitude have a reflection identity,
i7) Alree(n, oo 1) = (=1)"ATee(1,. .. n) . (1.188)

Further, as we said in sec. 1.6.1, the 1/N. term in the SU(N¢) Fierz identity decouples in ampli-
tudes with only gluons. Accordingly, the colour decomposition (1.186) is equally valid for U(N,) =
SU(N.) x U(1). But gluon amplitudes which contain the U(1) generator must vanish. So if we insert
the U(1) generator (T%vm)] =

1
méi instead of 7! into the colour decomposition (1.186), and col-

lect terms containing the same trace, we get a vanishing linear combination of (n— 1) sub-amplitudes,
Alree(1,2,3,...,n)+ATC(2,1,3, ... n) +ATC(2,3,1,. .., n)+- -+ AT(2,3,...,1,n) =0, (1.189)
which we can also write as

iii) S ATe(1,0(2),...,0(n) =0. (1.190)

o€Ecyclic

which is called photon decoupling identity.

The trace-based decomposition is clearly over-complete, the independent sub-amplitudes are less
than (n — 1)I. Let us see how many they are for n = 4. From the trace-based decomposition, we

must consider the sub-amplitudes,

A(,2,3,6)e A(13,6,2)  AfL4,23)
A(t,2,4 ,3) All3,2,4 Alr,4,3,2)
Figure 1.16: Reflection and cyclicity acting on four-gluon sub-amplitudes.

Reflection and cyclicity connect the sub-amplitudes according to the red arrows. Let us keep the

ones of the first line. Further, let us apply the photon decoupling identity to gluon 1,
A(1,2,3,4) + A(1,4,2,3) + A(1,3,4,2) = 0. (1.191)

So the independent sub-amplitudes are reduced to two, and using the photon decoupling identity
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on the other gluons, it is possible to see that one cannot reduce further the set of independent

sub-amplitudes, which can be chosen to be any of the two not connected by reflection.

In fact, shortly after the trace-based decomposition was found, Kleiss and Kuijf (KK) found the
relation [17],

AT el (8D = ()™ 3 AT (Lo({a) {57).m) (1.102)

oc{a}{pT}

where {a}U{B} = {2,3,...,n—1}, ng is the number of elements in {3}, {87} is {3} with the ordering
reversed, and the shuffle {a} {87} of the (n—2) elements of {a}U{3”} are the permutations which
preserve the ordering of the a; within {a} and of the 3; within {57} while allowing for all possible
orderings of the a; with respect to §; (like suffling two decks of cards). Note that the number of
permutations given by the shuffle {a} LL{A7}, i.e. the number of sub-amplitudes on the right-hand

side of the KK relation, is given by the binomial coefficient (n ) with nq +ng=n—2.

ng
The KK relation includes the reflection and the photon-decoupling identities and reduces the

number of independent sub-amplitudes to (n — 2)!.

Let us apply the KK relation on the four-point amplitude,

e a) choose {5} = {0}, i.e. the null set, and {a} = {2,3} then KK implies a trivial identity;

e b) choose {} = {2,3} and {a} = {0}, then KK implies
Aree(1,4,2,3) = A™°¢(1,3,2,4) = A(3,2,4,1), (1.193)

i.e. the reflection identity

e ) choose {a} = {2} and {8} = {3}, then KK implies
Atree(1,2,4,3) = —A"°¢(1,2,3,4) — A"°¢(1,3,2,4), (1.194)

Le.
Afree(1,2,3,4) + A"°(1,3,2,4) + A"*(1,2,4,3) =0, (1.195)

and with reflection and cyclicity,
Aee(1,2,3,4) + A"¢(1,4,2,3) + A"¢(1,3,4,2) =0, (1.196)

i.e. the photon decoupling identity on gluon 1.
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1.7.2 Multiperipheral colour decomposition

We shall consider now another colour decomposition. Let us rescale the structure constants (1.159)
by setting,
Fbe = iy/2f% = Tr([T°, T%T°) . (1.197)

Then the multiperipheral-based colour decomposition of the n-gluon tree amplitude is [18§]

M1y, ... ng) = g" 2 Y (Fo2 - Foon1), . A°(1,0(2),...,0(n —1),n), (1.198)

gESH_2

which displays (n — 2)! sub-amplitudes, and includes the KK relation.

The trace-based and the multiperipheral-based colour decompositions are equivalent (they use
the same colour-stripped amplitudes), and one can go from the trace-based to the multiperipheral-
based decompositions using the KK relation. A way to see this is to use the multi-Regge kinematics
(MRK), which is how the multiperipheral-based decomposition was found. Let us consider the
scattering where gluons 1 and n are incoming and gluons 2,...,n —1 are outgoing. Let us divide the
phase space in (n — 2)! simplices, according to the rapidity ordering of the (n — 2) outgoing gluons.
Let us select the simplex with rapidity ordering yo > y3 > ... > y,,_1. The sub-simplex with strong
rapidity ordering ys >> y3 >> ... >> y,_1 defines the MRK.

In MRK, amplitudes have naturally a multiperipheral structure (due to Fadin-Kuraev-Lipatov [19])
Mrtzree(lgv e ang)‘y2>>u.>>yn—1: gn_2(Fa2 T Fanil)amnAl;Lree(l? 2,...,n—1, TL) : <1199)

Note that there is only one string of F matrices.

Figure 1.17: Multiperipheral structure of n-gluon amplitude.

One can recover the multiperipheral structure from the trace-based decomposition by noting that
in MRK the leading subamplitudes are of type A7¢(1,{a},n,{B7}), where both {a} and {3} are

increasing sequences, which can be unfolded to display a KK structure.

Let us consider the colour ordering (1,2,...,n — 1,n) and display it in the 't Hooft graphical
representation, fig. (1.14),
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Figure 1.18: Colour ordering (1,2,...,n — 1,n) of n-gluon amplitude in 't Hooft graphical represen-
tation.

In MRK, the associated colour-stripped amplitude is (see eq. (H.169) )
Alree(1,2, ... n — 1,n) = AMEE(1 . n). (1.200)

We can think of the colour ordering (1,2,...,n — 1,n) as the KK relation with {#} = {0} and
{a} ={2,...,n—1}. All sets {a}, where 2,...,n — 1 are not in an increasing sequence, yield power

sub-leading contributions because of the strong rapidity ordering, yo >> y3 >> ... >> y,_1.

[y

3 34 “n~|

Next, let us consider the colour ordering (1,2,...,5 — 1,7+ 1,...,n,7),
3" '3 | u-[
M

R iy 1R C

Figure 1.19: Colour ordering (1,2,...,7—1,7+1,...,n,7) of n-gluon amplitude in 't Hooft graphical
representation.

where in the graph on the right-hand side we have "untwisted” the colour lines. In MRK, we

have
Azﬂee(lv{a}anvj) :_Ai\L/[RK(lw"vn)’ j:27""n_1’ (1201)

with {a} = {2,...,7—1,j+1,...,n— 1} and {8} = j. We can think of {a} ({8}) as the set of
gluons on the upper (lower) side of the untwisted plot. The right-hand side of the equation above is
the leading contribution of the KK relation,

A,(L{al,n ) =— > Au(1,0({a},j),n). (1.202)

oe{a}llly

There are (n — 2) of such leading contributions since j = 2,...,n — 1, and we can suffle the position
of 7 on the untwisted plot, and still get the result above. However, all sets {a}, where 2,...,7 —

1,7+ 1,...,n— 1 are not in an increasing sequence, yield power sub-leading contributions.

Next, let us consider the colour ordering (1,2,...,7 —1,j+1,.... k=1 k+1,...,n,k, j),
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Figure 1.20: Colour ordering (1,2,...,7— 1,7+ 1,...,k—1,k+1,...,n,k, j) of n-gluon amplitude
in 't Hooft graphical representation.

In MRK, we obtain
Aree(1, {a},n, {B7}) = AY*R (1, oony), gk=2...m—1,  j<k. (1.203)

with {a} ={2,...,7—-1,j+1,...;k—=1,k+1,...,n—1} and {5} = {j, k}. The right-hand side is
the leading contribution of the KK relation,

A {aln 8" = X Au(Lo({a},{8}).n) . (1.204)

oc{a}ll{B}

n
There are 5 of such leading contributions since we can shuffle the position of j and k£ on the

untwisted plot, and still get the result above. All sets {a}, where 2,...,7— 1,7+ 1,...;k— 1, k+
1,...,n — 1 are not in an increasing sequence, yield power sub-leading contributions. By keeping

moving gluons to the lower side of the untwisted plot we span all the colour orderings.

Inserting the colour factors, the amplitude in MRK is

M:LTee(l’ N ,n)‘y2>>“.>>yn71: gn72A,f,LWRK(17 N 7n)

n—1 n—
X[Tr(T® - T%) =>"Tr(T* - - TT%)+ > Tr(T*---T"T*T%) +...]|(1.205)
j=2

1<k=2

n—2
n—2
The Z < > = 2772 traces with alternating signs can all be collected through the identity,

ng=0 \ T8
Faiaxe: priasey ||| [en-3an-1an TT(Tal [Taz’ (77, [... [T%, T, .. D
= (Fo...F%-1), (1.206)
thus we get
MU(1, . ) yyos. ooy, = g7 2(F2 - Fan1), o AMBEK(1 ), (1.207)

The same procedure can be repeated for all the (n —2)! simplices, thus generating the (n—2)! strings

of F’s of the multiperipheral-based colour decomposition (1.198).
By using the identity (1.206), it is possible to show that the multiperipheral-based colour decom-

position is equivalent to inserting the KK relation into the trace-based colour decomposition also
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without resorting to a specific kinematic set-up. More details can be found in section 2.3 of [12] and
in [18].

Finally, the KK relation has been proven using monodromy relations (contour deformations in the
complex plane, i.e. on the Riemann sphere with punctures) in the low-energy limit of string-theory
amplitudes ([20, 21]) and using the BCFW recursion relations in field theory [22].

This is not the end of the story. There is actually another set of relations, induced by colour-
kinematics (CK) duality, which reduces the number of independent sub-amplitudes to (n—3)!. They
are a bit more involved, and there is no known colour decomposition which allows us to write the
amplitude in terms of (n — 3)! sub-amplitudes. However, CK duality holds great value, because it
exposes a link between gauge theories and gravity. We will postpone the study of CK duality until

we have got acquainted with the pure-gluon sub-amplitudes.

1.7.3 Parke-Taylor formula

Gluon amplitudes are built out of 3-gluon and 4-gluon vertices. m-gluon tree amplitudes may have
up to n — 2 vertices. Each vertex contributes at most one momentum, so there can be at most
(n — 2) momenta to contract with the n polarisation vectors €(p;, k;), i = 1,...,n, so each diagram
will contain at least one ¢; - ¢; term. If we can arrange that all the ¢; - €; vanish, then the amplitude

vanishes.

Let us consider the tree all-plus helicity amplitude. Using the identity (1.116), €t (p;, k)-€*(p;, k) =
0, and choosing the same reference vector k; = k for all €’s, we can make the amplitude vanish,
Atree(1+ 2% ... nt) = 0 (of course, we cannot choose k to be any of the momenta p;, else the polari-
sation €(p;, p;) would be singular, however we can build a light-like vector £ as a linear combination
of the momenta p;). Next, let us take gluon 1 to have negative helicity, i.e. we consider the sub-
amplitude A7°¢(17,2%, ... n™). We may choose e.g. the reference vectors to be ky = p, and k; = p;
with i = 2,...,n. Using the identity (1.117), € (p;, p1) - € (p1,pn) = 0, we make also this amplitude
vanish Afee(1=, 27 ... nt) =0.

The sub-amplitude with the two positive and two-negative helicity gluons is (see app. H.14)

(ig)*

(12)(23)(34)(41)’

Ale(1,2,3,4) = (1.208)
where 7, j are the negative-helicity gluons independently of their position in the colour ordering. The
amplitude above is the beginning of an infinite tower of MHV amplitudes, given by the renowned
Parke-Taylor (PT) formula [1] for the sub-amplitude with two-negative and (n — 2) positive helicity

gluons,

.. 4
Alree(1t 9% i) = (i) (1.209)

(12)(23) .. ((n — Dny(nl)
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Likewise, for the MHV sub-amplitude with two positive and (n — 2)-negative helicity gluons,

[i5]*

ATC(17,27, it gt ) = ()" [12][23] ... [(n = D)n][n1] "

(1.210)

As we already said in sec. 1.6.3 when discussing ¢qg — (n — 2) gluons, for MHV ampitudes there are
no multi-particle poles, sy n = (k1 + ... + ky)?, with m > 3.

Figure 1.21: Multi-particle factorisation. The on-shell leg P is depicted as outgoing on both sides,
but then with opposite helicities.

A MHV amplitude has two-negative helicity gluons, plus one more negative helicity from the on-
shell leg P. That is three negative helicity gluons, but in order for the MHV amplitude to factorise
into two non-vanishing amplitudes, each must have at least two-negative helicity gluons, for a total

of at least four. Thus, MHV amplitudes cannot have multi-particle poles.

Two questions arise:

1. The PT formula is extremely simple. It looks magic. Can we prove it? Shortly after it was
found, the PT formula was proven by Berends and Giele [23] using recursion relations on off-shell
currents. Although they lie slightly outside our course (which deal with on-shell quantities),
we shall display later the Berends-Giele recursion relations, since they are still the fastest way

to generate tree amplitudes. We shall look at Berends-Giele proof of the PT formula later.

2. There are formulae for MHV amplitudes of gluons only; of gg — (n—2) gluons; of four fermions
plus any number of gluons or photons, and they look alike. Are they related ? Yes, they are,
and one can see it is using the relations imposed by supersymmetric Yang-Mills theories. Now,
QCD is a non-supersymmetric Yang-Mills theory, but one can see that only at loop level,
where one can appreciate the difference between a quark loop and a gluino loop. So n-gluon
tree amplitudes cannot tell if they come from QCD, or from a supersymmetric extension.
Tree amplitudes with quarks can tell the difference, because quarks are in the fundamental
representation of SU(N,), while gluinos are in the adjoint; but only after including colour. Thus,
colour-stripped amplitudes with quarks are indistinguishable from colour-stripped amplitudes

with gluiuos. We shall look at these properties in the next section.

1.7.4 Bern, Carrasco, Johansson relations

Let us go back to the issue of how many independent colour-stripped amplitudes there are in a

scattering amplitude with only gluons. Let us consider the four-gluon amplitude. Four diagrams
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contribute to it,
2
’ 4
| 1 & ) l 2
Figure 1.22: Feynman diagrams contributing to the four-gluon amplitude.

We can write the amplitude as a sum over the three channels corresponding to the first three

diagrams,

NGy men )

iM, = —¢g2(”fs + : (1.211)

t U

where ¢, ¢y, ¢, (ng,ng,ny,) are colour (kinematic) factors.

The diagram with the four-gluon vertex is absorbed into the diagrams with three-gluon vertices
by matching the suitable colour factor and inserting a propagator as s;;/s;;. For example, using the
usual three-gluon vertex (1.160), the s-channel contribution is (s12 = s)

U opy po _ps pa

92fa1a2bfba3a4*€1 €2 €37 €4
1 T » S
H .[(pl _ pg)ag“1“2 + 2pl2tzgau2 _ Qpilmgam]
' ‘ (D3 — Pa)ag"™* + 207 g — 2ph1g™e] . (1.212)

where we used that the gluons are on-shell, p; - ¢, = 0. Then, out of the 4-gluon vertex (1.165),

we just pick up the matching colour factor,
—ijg? farasb phasas ( gunpis guiama _ quiia glizks) (1.213)

If the s-channel colour factor is taken to be
Cs = Falaszba3a4 — _Qfalazbfba3a4 ’ (1214)

with the normalisation (1.197), the s-channel kinematic factor is

1

ns = _5([(291 — pa)¥er - €9+ 2€1 - paey — 262 - pref] [(P3 — Pa)a€s - €4 + 263 - Pa€aa — 264 - P3€3al

+5(€1 - €362 - €4 — €1 - €469 - 63)> ) (1.215)
The other colour and kinematic factors are obtained by a cyclic permutation of the labels (1,2, 3),
Cine = CsMslim2351,  Culy = CoNslimasa - (1.216)

The QCD Ward identities say that if we replace the polarisation of a gluon, say €4, by its momentum

p4, while keeping all the other gluons on-shell, the amplitude vanishes.
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If we replace €4 with ps in ng, we get

1 (0% (0% (0%
Nsleymps = —5([(191 —p2)¥er - €2+ 261 - pacy — 262 - pret] [(P3 + Pa)a€s - Pa — 2p3 - Pa€sal
+5(€1 - €369 - Py — €1 - Paca - 63)> ) (1.217)
Using momentum conservation py = —p; — p2 — p3,
0
1
ns|54=p4 = —5([—(]91 - 1 +p2)€3 "P4 — S€3 - (Pl —pz)]€1 €2
(=261 - popr—ez + 2¢5 - prer—a)es - pa — 5 (261 - Pacy - €3 — 265 - i€y - €3)
+5(—€1 - €362 - (p1 + p3) + €2 - €361 - (P2 +P3)))
s
= —5(63 (P2 —pi)er-eat €1 (p3—p2)ea- €3+ € (p1 —p3)es - 61) ) (1.218)

which can be written as

Nsles=ps= $f(ps€) (1.219)
with 1
f(p7 6) = _5 Z €oy ° 60'2<€O'3 *Poy — €03 * po'l) 5 (1220)
cyclic o

which is by definition invariant under cyclic permutations. Thus, for the amplitude, we get

NsCs  MiCr  MyCy
( + - + )|64:p4: (CS + ¢t Cu)f(p, 6) ) (1221)

S t U

which is gauge invariant if ¢, + ¢; + ¢, = 0. But
Cs+ ¢+ ey = _2<fa1a2bfba3a4 =+ fa2a3bfba1a4 4 fa3a1bfba2a4> — O, (1222)

because of Jacobi identity on the structure functions.

Further, also the sum of the kinematic factors vanishes,
ng+ng+n, =0. (1.223)
E.g. collecting the terms proportional to €; - €5, from n; we get
(1 —p2) - (P3 — pa)es - €4+ 2(p1 — p2) - €463 - pa — 2(p1 — p2) - €364 3, (1.224)

from n;, we get

A€z - pa€s - p1+ 2p2 - p3€s - €, (1.225)

from n,, we get

—4€3 - pres - p2 —2p3 - pr€z - €q. (1.226)
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So, using momentum conservation, the term of ng + n; + n, proportional to € - € is

[2(?(_%) *P3€3 - €4 — 2(p1 — pa) - €463 (p1 + p2) — 2(p1 — p2) - €364 - p3
+es - paeq - p1 + 2pa-pesT€s — deg - prea - po — 2ps-pregeq) el - €
= ([=2(p1 = p2) - €4+ 2ps - ea+4p1 - calps - €5+ [=2(p1 — ) - €4 — 2p3 - €4 — 4pa - ealpr - €3)er - €
= 2(p1 +p2 +p3) - €a(pa- €3 —p1-€3)er - €
=0. (1.227)

Likewise, all the other terms vanish (please check it).

Solving the Jacobi identity ¢; = —c, — ¢, we can write the amplitude in a gauge-invariant form

since the colour factors ¢, and ¢, are independent,

iMy = —ig? [(% - %) e + (% e (1.228)

i.e. since the amplitude is gauge invariant, and ¢, and ¢, are independent, then the coefficients

Ng ng Ty, Ny . .
(— — 7) and (— - 7) are gauge invariant.
S

But the multiperipheral colour decomposition (1.198) for the four-point amplitude is
My = g*[F 2P FP%% Ay(1,2,3,4) + FP9P PP A4(1,3,2,4)] (1.229)
Since ¢, = F@®bfbasas gnd ¢, = F®@bFba204 we can also write it as
My = ¢*csAy(1,2,3,4) — c,Ayg(1,3,2,4)]. (1.230)

Equating egs. (1.228) and (1.230), we get the colour-stripped amplitudes,

. (Ms My /101 Ny
Ay (1,2,3,4)=—i|—— — ) =— -+ - — 1.231
i44(1,2,3,4) z(s t) zK8+t>ns+t : (1.231)
Ay(1,3,2,4) (”“ "t> {” (1 + 1) (1.232)
7 =i|l— - — — —+ - ) n. , )
A u t t u t
where we used the kinematic identity (1.223) n; = —n, —ns. We can also write them in matrix form,
A u 1
1,2,3,4 | = 7 s
p(AdL234) gt (™), (1.233)
Ay(1,3,2,4) _- 2 Ny
t  ut

where we used momentum conservation. Note that the rank of the matrix is less than 2, since the

determinant vanishes,
U S 1

—22 o0, (1.234)
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consistently with the fact that the system (1.233) cannot be solved for ng and n,, which are gauge
dependent, in terms of the sub-amplitudes, which are gauge invariant. The two equations in (1.233)

can be put together,
A(1,3,2,4) = 2 A44(1,2,3,4), (1.235)
u

or equivalently, the eigenvalue equation for the matrix in (1.233),

0
s u s
)\2—<—))\—/:0, 1.236
ut st ut i 12 ( )
has solutions,
1 1
)\1 == O, )\2 - - — —. (1237)
s u
The orthogonality condition on the null eigenvector,
u 1
_ Z0e =0 1.238
Stvl + t/UQ ) ( )

yields eq. (1.235).

Eq. (1.235) was found by Bern, Carrasco, Johansson [28], it is known as BCJ relation and implies
a linear dependence between the two sub-amplitudes of the four-gluon amplitude.

Firstly, let us check that the BCJ relation (1.235) we obtained out of the four-gluon amplitude
does hold on a specific helicity configuration. Let us take (17273%4"). The sub-amplitudes are
simultaneously MHV and MHV| and can be written as

(12)*

A (17273141 = 1323 BH (T (1.239)

(12)*
(13)(32)(24)(41)
(12)(34) | oyt
= —WA4(1 2-374%)
BG4 4 1 oat gt
_ [24]<24>A4(1 2-3747)

= ZA, (172734, (1.240)
u

A (173%274%) =

where in the second line we used momentum conservation, (12)[24] = —(13)[34].

Secondly, the BCJ relation generalises to n-gluon amplitudes,

ST s95)An(1,3,...,4,2,i4+1,...,n) =0, (1.241)
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or its equivalent form,

|
—

(iﬁuﬁ%@,”JJJ+L”wn%:m

=2

n

[|
v

%

(1.242)

plus permutations, yielding (n — 2)! relations, which are called fundamental BCJ relations.

For n =4, we get
—S12

—_——
523A(17 37 27 4) + (523 + 524) A(17 37 47 2) =0 )

then we use the photon decoupling identity,
A(1,2,3,4) + A(1,3,2,4) + A(1,3,4,2) =0

and we get
—S13

—_——~
81214(]_, 2, 3, 4) + (812 + 823) A(l, 3, 2,4) =0

i.e. eq. (1.235).

For n =5, we get

—S12

—_—
82314(1, 3, 2, 4, 5) + (823 + 824)14(1, 3, 4, 2, 5) + 593 + S24 + So5 A(l, 3,4, 5, 2) =0.

Then, we use the KK relation (or photon decoupling)

A(1,3,4,5,2) = —A(1,3,4,2,5) — A(1,3,2,4,5) — A(1,2,3,4,5),

(1.243)

(1.244)

(1.245)

(1.246)

(1.247)

plus five more relations through the permutations of the indices 3,4,5. Out of the six relations, we

get four sub-amplitudes in terms of two independent ones (from [28])

ALe(1,3,4,2,5) =

—81254514?66(1, 2, 3, 4, 5) + 814(524 + 825)145(1, 4, 3, 2, 5)

513524

Alee(1,2,4,3,5) =

_814325"4?66(17 47 37 27 5) + 845(312 + 524)*’45(17 27 37 4a 5)

524535

AY°(1,4,2,3,5) =

—812845A?88(1, 2, 3, 4, 5) + 825(814 + 824)145(1, 4, 3, 2, 5)

535524

_81482514?66(17 47 37 27 5) + 812(824 + 845)145(17 27 37 4—7 5)

Alree 1,3,2,4,5) =
> ( ) 513524

bl
Y

b

(1.248)

There is a more general form of the BCJ relation, but it is possible to show that the fundamental

BCJ relations suffice to generate the linear relations among sub-amplitudes which reduce the inde-

pendent sub-amplitudes to (n — 3)!. In fact, the (n — 2)! relations yield a (n — 2)! x(n — 2)! matrix

having rank (n — 3)!, which means that there are (n —2)! —(n —3)! = (n —3) (n — 3)! relations among

the sub-amplitudes, which reduce them to (n — 3)! independent ones.

The fundamental BCJ relations (as well as the KK relations, the photon decoupling identity and

the reflection identity) can be proven through the BCFW recursion relations (see [22]).
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1.8 Supersymmetric relations

Tree amplitudes cannot tell if they come from QCD, or from a supersymmetric extension. That is
true on the whole amplitude for gluons only, and on the colour-stripped amplitude for quarks with
gluons. Thus, in order to study the gluon amplitudes and the connections between different MHV
amplitudes, we can use any supersymmetric extension of Yang-Mills we like. We shall use N =1

supersymmetry, which is the simplest.

Let us consider a theory with a local SU(N,) symmetry and a global N=1 supersymmetry, which
connects bosons and fermions. The N=1 supersymmetry is characterised by a supercharge (),, where

a is a right-handed spinor index, and its hermitian conjugate Ql

@, and Ql, together with the generators of the Poincare group P* and M*”, form the supersym-

metry algebra,

[Qa, P*] =0, (1.249)
QL P =0, (1.250)
[Qa, M*] = (5% )aQc (1.251)
[QF, M*] = (S1")5Q1, (1.252)
{Qa; @} =0, (1.253)
{Qa, QL) = 2003 Py, (1.254)

where egs. (1.249) and (1.250) say that the supercharges are conserved, and egs. (1.251) and (1.252)

that they transform indeed as spinors under Lorentz transformations.

Then we enlarge the space z* in order to include anticommuting (or Grassmann) right-handed
spinor coordinates 7,, and the left-handed complex conjugate n}. {z,n,n*} form the superspace. We

require that Q(n) = 7°Q,, so that Q(n) commutes with both bosonic and fermionic fields.

The supercharge () connects the gluon g* to a massless Weyl spinor A*, the gluino,

[Q(n), g™ (p)] = FT*(p, n)A*(p) (1.255)
[Q(n), A*(p)] = FTT(p,n)g™ (p) - (1.256)

where I'%(p, n) is linear in 7.

Through a Jacobi identity for the supersymmetry algebra (see Dixon’s TASI 1995 lectures [8]),
I'*(p,n) can be chosen to be

I(p,n) =mu_(p), T (p,n)=u-(p)n. (1.257)

The parameter 7 is arbitrary: we may choose it to be 77 = Oul (k) = 0 (k| and n = Ou(k) = 0 |k*)

i.e. a spinor with an arbitrary light-like vector k, times a Grassmann variable 6, so that I'F(p, q)
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(anti)-commutes with (fermionic) bosonic operators,

I (p,n(k)) = 0uy (k)u-(p) = 0[kp], (1.258)
I (p,n(k)) = 0{pk) . (1.259)

The supercharge Q(n(k)) annihilates the vacuum, so the commutator of Q with any string of operators

ehich create or annihilate g* or A* has a vanishing vacuum expectation value (vev),

(01 [Q, ¢1,- - -, Pn] 0) :i 0] ¢1,...,[Q, ¢ ...n]0) =0. (1.260)
i=1

where ¢; = g, A*. This is a supersymmetric Ward identity (SWT).

Let us apply it with a string of operators as follows:

0 = (0/[Q,Afgs...9:5]10)
= T (p1,k)Au(g7, 95, 95) + OIZA192. g (=T (pi, K)AS gy ... g 10)
0

~gt),  (1.261)

= _Fi(pla k)An(gfvg;ra s 79:) + ZFJr(pia k)An(A;rg; c e

=2

where we used that {A],I'*(p;, k)} = 0, and that on the gluino (fermion) line, helicity is conserved
and thus the state A] A is forbidden. So the SWI implies that

An(gi 950 00) = 0. (1.262)

We did not specify a loop expansion, so this is true to all loops for a super-Yang-Mills (SYM) theory,
and at tree level for QCD, in agreement (for QCD) with the result we had derived in sec. 1.7.3.

Next, let us take the string of operators,
011Q, A9y 95 .- 91110) =0 (1.263)
using the commutators of the supercharge ), we get

- _F_(pbk)An(gi_agZ_?g;v cee 792_)
—I 7 (p2, K)An(AT, AT, 95, 9)

n

+ 3 T (i k) An(A 95,97, (1.264)
i=3
then if we choose k = py — I'"(py, k) = 0, so
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which is true to all loops for SYM, and at tree level for QCD, again in agreement with the result we

had guessed in sec. 1.7.3.
If we choose k =p; — I'"(p1, k) =0, so

An(AT7A57g;-7"'7gTT> :O7
which is true to all loops for SYM, and which at tree level for QCD, it implies that
Agee(qi’—’q2_7g;-""7g:> = 07

again in agreement with the result we had guessed in sec. 1.6.3.

Let us take the string of operators,

0 = (01[Q, 9195 A3 g1 ---9,]10)
= T (p1, B)Au(AT, 95, A3, 94 -0 00)
+ T (2, k) An(gr Ay, AS 0055 0)
U™ (3, k) An(97 5 955 93,945+, 9n ) -

If we choose k = p; — I'"(p1, k) = 0 and we get

1) A (91, Ay AL gl ah) — B AL(97, 95,9498, 95) =0.

i.e.

(13)
(12)

which is true to all loops for SYM, and which at tree level for QCD implies that

An(gr, Ay AT gl ) = An97,95, 95,98, 90) .

ree( — —— <13> - =
A?n (glﬂq2’q;792_7"'7g:) = @An(gl7927gg—7gz—1~_w"agi)

(12)*(13)
(12)(23) -+~ (n1) "

i.e. the result we had stated, without proof, previously.

(1.266)

(1.267)

(1.268)

(1.269)

(1.270)

(1.271)

Through the SWI, we have managed to link the n-gluon MHV amplitudes to the MHV amplitudes
for qg — (n—2) gluons. So it will be enough to prove one of them, say the n-gluon MHV amplitude.

More details on N=1 supersymmetry can be found e.g. in [4], and its application to helicity

amplitudes in [7] and in [8], [9].
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1.9 Berends-Giele recursion relations

Let us consider the sum J*(1,2,...,n) of colour-ordered (n + 1)-point Feynman diagrams, where
legs 1,2,...,n are on-shell and one leg is off-shell, with uncontracted vector index p. Since J* is
an off-shell quantity it is gauge dependent; in particular, it depends on the reference vectors of the

on-shell gluons, until we extract an on-shell quantity.

Figure 1.23: Off-shell current in Berends-Giele recursion relations.

The current J* can be constructed recursively, following the off-shell line back into the diagram.
Leg 1 must be attached to either a cubic or a quartic vertex, whose legs are then contracted with

similar currents with fewer legs,

JH =

Z P(Priy Piy1gn) (1, .. 0) (0 + 1, ..., n)
n—2

+ZV‘“’”"J Z JGi+1,...,0) (i +1,...,n)| , (1.272)

j=i+1

with P, ; = p; + ...+ p; and the colour ordered vertices,

Vi (P.Q) = \}5[29“’@” — 29" PP + g"*(P — Q)"], (1.273)
Vi = %[29“"9“’ —g"7g"" — g"g™]. (1.274)

where we used the 4-gluon and 3-gluon colour-ordered vertices we introduced in sec. 1.6.1, with

momentum conservation P, = —(P + @) and treating legs P and @ as on-shell.

The currents fulfil a reflection identity,
i) JH(n,...,2,1) = (=1)"TJA(1,2,...,n), (1.275)

and they are conserved,
i1) Pl Ju(1,2,...,n) =0. (1.276)

The photon decoupling identity yields a vanishing linear combination of n currents,

i) JM1,2,3, . n) 4+ JM2,1,3, ) 4+ JR2,3, 1 n) 4+ JR2,3,.. . ,n, 1) = 0. (1.277)
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(n 4 1)-point amplitudes are obtained from the currents J,(1,2,...,n) by amputating the off-shell
propagator, i.e. by multiplying by iPﬁn, then by contracting with €”(p,,1) and taking the limit
P?, = pi,; — 0. Closed-form expressions of off-shell currents are known for the simplest helicity
configurations, J#(17,2% ... n*) and J*(17,27,...,n"), as we will see. From the former, one can
show (once more) that sub-amplitudes with none or one negative-helicity gluon, A€ (1%, 2%, ..., (n+

1)*) = 0. From the latter, one can prove the Parke-Taylor formula.

Let us construct the currents for the simplest examples. The current J#(1,2,...,n) must include
the n polarisation vectors € (P;, ¢;), i = 1,...,n. Let us set
JH(E) = et(pi ai) - (1.278)
Then
JH(1,2) = —m‘/},“”p(pl,pg)Jy(l)Jp(2). (1.279)

For positive-helicity gluons, we take the same reference vector ¢. In V" the ¢"* term does not
contribute, because it contracts the polarisation vectors, yielding €, (1,¢)-€4(2,q) = 0. In app. H.19,

we show that B N
1 g +py) e

JH(1T,21) = 1.280
2= 5 i (1250
We make the ansatz that this formula extends to n gluons,
1 - +
JE(F, 27, ) = —— a1 9ubrnla7) (1.281)

V2 (q1){12) -+ ((n = 1), n)(nq) ’

and prove it by induction, showing that this expression is consistent with the recursion relation.

Firstly, it is true for n = 1, since

1w la")

V2 (ql)(1q)
i(q*|7u|1’>%_eu

\/5 <ql>M - +(p17Q)'

Let us suppose the formula is correct for (n — 1). Then we write the recursion relation, noting

JH1Y) =

(1.282)

that V"7 and the ¢”? term in V{"” do not contribute, because they contract directly two currents,

yielding terms like

<q_‘ VP q+> <q_ Y Pisin ’q+>

= — (g | Pr” g (a | wPisrn |aT)

()T )as ) NN D)l ) PL P
Fierzing — 25467

- _2)\a(q) (Eu)afz(ap)ad)\d(Q) )‘b(Q) )‘b(Q) P{fz‘Pﬁl—l,n

= -2 <q*’ Pl,iPi+1,n ’q+>MO (1.283)
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We can then write

Jrat 2t et
n—1

- T 2 R0 P — 20" P

1 g [ Puild?) 1 (@ 1Y Pisinla)
V2 {q1){12) - ((i — 1)i)(iq) /2 (q(i + 1)) - {(n — 1)n)(ng)
1 1 i+ 1))

(i(i
V2P, (q1)(12) -+ - {(n — 1)n)(nq) = (ig){q(i + 1))
(a7 [ Pisralri|a") {a |7 Pirn [67) = (a7 [ 7" Prila®) (0

| PraPiinld®)) - (1.284)

Then we charge conjugate the current,

q_’ Pl,iPiJrl,n ’q+> = - <q_) Pi+l,nP1,i q

), (1.285)
and add (¢~ | Piy1nPisinla™) = PAi, (@] la") = 0. We can re-write the current as

JAIT 2%, nt)
1 (| Prnla") = (i +1

- 7 - .
- V2P2, (q1){(12) -+ ((n — D)n)(ng) = (ig){q(i + 1)) (a ‘ PiiinPrn ’q ). (1.286)

Next, we use the identity (see app. H.22)

= (i(i+1)) It Pl,n
; W ’ Pijrn= g (1.287)
based on the eikonal identity (see app. H.21)
w (iG+n) (k)
2 Tl ali+ 0]~ Gala) (1.288)
and we get
Wit oot by L (¢ |7 Prnlgh) (17| PrpPrnlat)
P25 ) = e a2 — D) (1)
([ Pinlah) (1.289)

~ V2(g1){(12) - ((n — 1)n)(ng)

The amplitudes 1A7¢S (17,2, ..., (n+1)%) are obtained by multiplying by iP},, by contracting with
€'t (P,41) and taking the limit Pf’n = p2,; — 0. Since there is no Pﬁn pole in the current, we conclude
that

A1t 2t (n+1)F) =0, (1.290)

which is the third time that we prove it.
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Also by induction, one can obtain (see app. H.23)

LT[ Py, 1) & (U Pk I1T)
)_7 (12) -+ - (n1) > P2, P2

k=3

JH17,27 0 n

(1.291)

with polarisations €” (p1, p2) and €} (p;, p1), with i =2,...,n
In app. H.20, we show that J#(17,2%) =0, and
L (174" Pas [17) (L[, Pr17)

JH(1™, 2% 3T) = — : ’ : 1.292
( )= R 19@)BY PP (1.292)

which is the first non-trivial case of this current, and agrees with the ansatz.

Then one assumes the ansatz to be correct for J#(17,27, ... (n—1)"), with n > 4. We sketch how
the proof by induction unfolds, which is given app. H.23. One writes the recursion relation, noting
as before that V/}/*?? and the ¢”” term in V{"” do not contribute, because they contract directly two
currents, yielding terms like (177" |27) (17| 77, [1T7) and (17|77, [1F) (17| 75 |1T), which can all

be Fierzed away.

The recursion relation is reduced to

7
——5
Pl,n
n—1

+ N VP (Pri, Pran) (1, i) (G + 1), )| L (1.293)

1=3

ST, 2E, ) = VI (pr, Pon) J,(17)J,(2*, .. m)

with V&*?(P,Q) = é[zgwcy — 2gM PP,

From J#(17,2%,...,n"), the amplitude tAZ¢5(17,2%,...,(n + 1)7) is obtained by multiplying
by iPZ,, by contractlng with € (pn41), and taking the limit P7, = p;,; — 0. The only P7, pole
in eq. (1.292) is for &k = n. For the polarisation of gluon (n + 1), we use € (p,11,p,). Then the

amplitude is

AT, 20, T (1))
<n+|7"l(n+ D) 1 (1 |y 17) AP, Pra1* )
V1) V3 D) PR (1294
We need to perform the contraction,
n+' * ‘(n + 1)+> <1_’ Yu Yy 1+>
= L (7 (NEX ()" e (n +1)
= N(1)(@0)5 (@) A1) Aa () (0") N (0 + 1) , (1.295)
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then we use the Fierz identity

= 20 (1) Ao (n 4+ DAa(n)(00)*N(1)

=2(1(n+1)) (n*|v, [17) . (1.296)

Further, through momentum conservation, we replace le =P and P2, | = Spni1, SO

A;’"jel(l‘ 2t ..o ont (n+1)7)
(1 (n+1) (n*lp, AP, 11T)
< 2) -+ (nl) n(n+1)]snni1
(1(n +1)) [nm+T)[((n + D1){In)[ne+T]{((n + 1)
- (12) -+ (n1) [n—+TT%(n + 1)n)
><1(n+1)>

(n(n+1)

(12

_ (I(n +1))*
T (12) - (n(n+ DY{(n+ 1)1) (1.297)

which proves Parke-Taylor formula.

In the literature, one can find also in closed form the current J#(17,27,3%,... n™) from which the
NMHV amplitudes A(——+ - - -4+ —) with three adjacent negative-helicity gluons can be derived [24],
however the greatest value of the Berends-Giele recursion relations is to provide an efficient (in fact,

still the fastest) method to generate numerically the helicity amplitudes.

1.10 Amplitudes with Photons

Amplitudes with photons can be obtained from the amplitude of ¢g — (n — 2) gluons (1.173) by

1
\/_ 7

replacing the SU(N,) generator of a gluon, say gluon n, with the U(1) generator (T%v®)} =

Since the U(1) generator commutes with SU(N,), we obtain the amplitude,

Miree(121 272 3 (0 — 1)y, n5)

q77q

= V2Queg"™® 3 (T Tom-r)2AUCC(10 2N gy g yimy) (1.298)

oESn_3

where a factor of the strong coupling g has been replaced by the QED coupling \/§Qqe, and the

sub-amplitude is obtained from A!¢(1;,2,,3,...,n) by summing over the positions of gluon n,

Alree(1.2,,3,...,n—1,n,) = A(15,24;3, ..., n)
+ AT(15,243, .o onon = 1) 4+ AT(14,245m,3, .. ,n — 1) (1.299)
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In particular, for the MHV configuration (1.184), where 7 is the negative-helicity gluon or photon,

we write
A U0328% ) = g
) <n§i®>—3<1l>i>><<n Oy TR ><<§§§3<“i<n — )
<12><23<>2-i ?3-)<<1<2 —) [<<7§(n ) %Zw i <<ri(f 233% - >1>> o @fj%}
T o T (1-460)
then we use the eikonal identity (1.288) and we obtain
A1, 22 35 i, nt) = 2D (20)"(L3) (1.301)

(2n)(n1) (12)(23) -~ ((n — 1)1)

The procedure can be iterated: the amplitude with r gluons and m photons, with m +r = n — 2,

can be written as

]\4“’66(1’_\1 2_)‘1 39, (r+2)y,(r+3)y,...,n,)
(V2Qqe)™g" S (T - - T )2 ATee(12 20N gy 0o, (7 +3)y,...,my), (1.302)

ocESy

where

Alree (1,20 3, r 4+ 2,(r +3),,...,n,) = SZ/S Ayee(131,2,M,0(3),...,0(n)) . (1.303)
oESH—2 T

In particular, for the MHV configuration (— — +---4), iterating the eikonal identity (1.288), we

obtain
21)3(14) i
Alree(13,2- 3. r+2,(r+3),,...,n,) = < (1.304)
7 7 7 (12)(23) -+ - ((r + 2)1 ]113 )
with ¢ the negative-helicity gluon or photon.
Finally, the amplitude with ¢g — (n — 2) photons is

Mree(121, 2.2 3. ny) = (V2Qqe) AN (12, 2,3, .. ny) (1.305)

where
ATee(124,2,M,3,, .. ny) = Y ATC(124, 2,0 03, 0y) (1.306)
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In particular, for the MHV configuration, we obtain

tree(1+ o— q+ c— +\
Ay(17,2,,37, iy, ny) =

(1.307)

20)3(1d) & (21)
(12)(21) ;=5 (29)(51)

1.11 A collider physics summary

Let us take stock of what we have done so far. Using the spinor helicity formalism, we have computed

the (squared) amplitudes for:

. ete” — ptu.
.
ete” = qq crossing, {qe = qe: DIS (1.308)
qq — ¢4~ : Drell — Yan
° ete”™ — 7.

3 — jet production in e*e” (relevant for a)
ete” = qqg : (1.309)
soft and collinear limits

colour decomposition
qq — (n — 2) gluons : (1.310)
MHV amplitudes

i qq9 — 99

colour decompositions

MHV amplitudes
g9 — (n — 2) gluons : (1.311)
multi — Regge kinematics

BCJ relations

i 99 — 99

° qq — r gluons + m photons, with m +r =n — 2.
. 97— q7

. 99 — qq

o g9 — H (HEFT)

o g9 — Hg (HEFT): soft and collinear limits

° supersymmetric Ward identities
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° Berends - Giele recursion relations

This sums up the knowledge of tree-level helicity amplitudes at the turn of the new millennium
(except that the BCJ relations were found in 2008, and that we have not covered gg — gggg and
NMHYV amplitudes. We will do it with BCEFW) and provides all the basic processes of ete™ colliders

and hadron colliders.

At the end of 2003, Witten jump-starts a new thread of studies of amplitudes, which is still
ongoing. In a work on twistor string theory [26], Witten studies amplitudes in a (+ + ——) metric,
i.e a metric with two time components. Real momenta in a (+ 4+ ——) are equivalent to complex

momenta in the usual (+ — ——) metric. As we will see, that has far-reaching implications.

1.12 Complex momenta

1.12.1 Three-particle kinematics

In sec. 1.5.3, we discussed the collinear limit in ete™ — ¢qg scattering, fig 1.8. We considered the
limit as gluon 4 becomes collinear to quark 3, ps||ps. We said that the momentum P = p3+ p4 of the
quark parent goes on-shell as P? = 2p5-p, — 0. Let us investigate the kinematics a bit more precisely.
Let us suppose that P* = (P° 0,0, P?) is aligned with the beam direction p* = (p/2,0,0,p/2). In

light-cone coordinates, they are

p'=(p,0;01),  P'=(P",P;0.). (1.312)
Fixing the minus light-cone direction as n* = (0,77;0,) and purely transverse vectors as k| =
(0,0; k1), with k% = —’EL‘Q = —k, k%, for k, = k, + ik,, we may use the Sudakov (or light-cone)

parametrisation and write p3 and p, as

ks "

z 2p-n’

ki, "
C1—z2p-m

py = zpt + k5 —

py = (1—2)p" + ki, (1.313)
Using the fact that p> = n*> = 0 and p-k;;, = n- ki = 0, we can easily check that p3 = k3, —
k2 L% = 0 and likewise for p?, i.e. p3 and ps are on the mass shell. Further, momentum

conservation P = p3 + py implies that k3, = —k4; = k. Then

k2 kﬁ2 77,u
PH=pt — (£ = : 1.314
P (z +1—z)2p~77 (1.314)
i k2 k2 k2
p?— (2L Ly L 1.315
<z +1—z> z(1—2)’ ( )
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i.e. P is time-like (P? > 0 since k2 < 0) and goes on-shell as k; — 0 (note that if one of the emitted
particles is soft, z — 0 or (1 —2) — 0, then k£, and z or (1 —z) go to zero at the same rate, such that
P? still vanishes). This is not unexpected: P? > 0 implies that the parent particle is either off-shell
or massive. A massless parent particle can be on-shell only in in the strict collinear limit, £, = 0,
where all three particles are collinear. Thus, a massless 3-particle scattering, with p{ + p§ + p§ =0
and p? = p2 = p2 = 0 is impossible, because it implies that s2, = (p; + p2)? = p? = 0, and likewise
s13 = S23 = 0. Accordingly, (ij) = [ij] = 0, with 4, j = 1,2,3. The only solution, as we saw, is that
the three particles are collinear.

The obvious assumption above is that momenta are real. However, if momenta are complex, there
is a way out: for complex momenta, \; is not the hermitian conjugate of \,. Accordingly, [pk] is not
the complex conjugate of (kp), although s, = 2p - k = (pk)[kp] still holds (we introduced the notion
of squaring through projection operators (1.36) or Fierz and Gordon identities (1.81), without using

complex conjugation).

1.12.2 Constraining three-particle amplitudes

For a massless three-particle scattering, momentum conservation is p} + p5 + p5§ = 0, or using
eq. (1.55),
| 15) (1% +]2%) (2% +]35) (3F|= 0. (1.316)
With complex momenta, two chirally conjugate solutions exist: multiplying eq. (1.316) by (17| or
(27|, we get
(12)(2F|+(13)(3*| = 0, (1.317)
(21) (11 [+(23)(3*| = 0, (1.318)

then either (12) = 0, which implies that (13) = (23) = 0, or (17]oc (2F]ox (31|, i.e. Ay o< Ag o Ag,
which implies that [12] = [13] = [23] =0, i.e.

i) Mooy = [ij]=0 and sy;=0, but (ij)#0, (1.319)
for i, 5 = 1,2, 3. Likewise, one shows that
i) M xAoxAg = (ij)=0 and s;=0, but [ij]#0. (1.320)

Cases 1) and ii) describe just two points in phase space, related to each other by parity. So with
complex momenta a solution exists, but it must consists of functions of either right-handed spinors

(ij) or left-handed spinors [ij], but not functions of both.

64



1.12.3 Little group scaling

In the Tutorials (app. H.26), we compute:
i) the MHV three-point amplitude,

12
Atree(1— 9- gty = 2T 1.321
ii) the MHV three-point amplitude,
12]4
jAree(1t 27 37) = —‘[7. 1.322

through the three-gluon vertex, but there is a deeper way to compute the dependence of three-
point amplitudes on the spinor products. We know that the momentum p,; = )\a(p):\d(p) or pi® =
A (p)A%(p), or otherwise p=Ip Xp~| +|p"XpT], is invariant under little group scaling (1.66), so that

the spinors scale as in eq. (1.72),

Aa(p) ~ &(p) ~ [pT) ~ 1) = 2halp),

in (0,1/2) (1.323)
M (p) ~ EL(p) ~ (7| ~ (| = 22(p),
Aj(p) ~E@ ~ )~ 1] Ta(p)’ in (1/2,0), (1.324)
Xa(p) ~ &L (p) ~ (| ~ [ 1= 27 Nalp),

with z € C. Note that A\, and \*, i.e. the right-handed spinors, scale in the same way since they are
related by charge conjugation, A\, = e, \?. Likewise for the left-handed spinors, A% and \;.

Under little group scaling of the spinors associated to the gluon momentum, the polarisation of
a positive-helicity gluon,

(|7 lp7)  A%(k)(5,)aaX?(p)

+x _

O B T VNG

scales like

e (p k) = 272l (p, k). (1.325)
Likewise,
. Et pt
EM (p,k‘):—< "yﬂ‘ >

V2(ktp=)
scales like
6, (p. k) = 2% €, (p, k). (1.326)

Note that the polarisation is invariant under scaling of the spinors associated to the reference vector

k. The scaling above is consistent with the scaling €} (p, k) — ei¢e:(p, k) of a right-handed spin-1

particle, we saw in sec. 1.4.

Every positive (negative)-helicity gluon brings one more factor z=2 (z?) to the scaling of the
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amplitude. Gluon amplitudes are written in terms of the spinor products associated to the momenta
of gluons and reference vectors, which though are little group invariants. So the little group scaling

of an amplitude is determined entirely by the gluon polarisations,

AL,....on) = [[27™AQ,...,n), (1.327)

i=1

where h; is the helicity of the " particle.
Suppose a three-point amplitude is made of right-handed spinor products (ij),

Alree(1h oh2 3hs) o (12)712(23)72 (13) %13 (1.328)
with {hq, ha, h3} = £1. Then under little group scaling,
T1o + 113 = —2hy T1g + Tag = —2ho, T13 + Tog = —2h3, (1.329)
which have solutions,
T19 = —hy — hy + h3, x13 = —hy — h3 + ha, To3 = —hy — hz + hy, (1.330)

such that
Alree(17,27,3%) o 127 (1.331)
3 o (13)(23) "’ '

so little group scaling fixes uniquely the dependence of AY“¢(17,27,3%) on the right-handed spinor

products.

Now, if we suppose that the three-point amplitude is made of left-handed spinor products,
Alree(1hn oh2 3hs) oc [12]¥12[23]v22[13]%15 | (1.332)
then under little group scaling,
Y12 + Y13 = 2hy Y12 + Yoz = 2ha, Y13 + Y23 = 2h3, (1.333)
which have solutions,
Y12 = h1 + ha — h3, Y13 =h1 + hg — ha, Yoz = ha + hg — hy, (1.334)

such that
[12]?

[13][23]

AYee(1T,27,37) (1.335)

Note that if we tried to fit Ay°¢(17,27,3") with left-handed spinor products, eq. (1.334) would
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imply that

Alree(17,27,3%) (1.336)

but this would have the wrong mass dimension. In fact, A¥¢¢(1"12h2 33) must have mass dimension
= 1, since it comes from the three-gluon vertex which has a momentum in the numerator (this can
also be seen from an n-boson function, whose mass dimension is 4 —nB, where B is the boson field),
but (,) and [,] have mass dimension = 1, so Ay¢¢(1h1 2"2 3"3) must have one more spinor product

in the numerator.

We conclude that by little group scaling and dimensional analysis, the three-point MHV ampli-
tudes are constrained to the form given in egs. (1.331) and (1.335).

By Lorentz invariance, the three-particle amplitude is only restricted to be a function of (ij) and
[ij]. In order not to vanish in either point i) or ii) it cannot be a function simultaneously of (ij) and

[ij]. So we can write that in general,
My = MJT((12),(23), (13)) + M3 ([12], [23], [13]), (1.337)

where M and M3! are generic functions of the spinor products (H and A refer to“holomorphic” and
“antiholomorphic”). Then we argued that if the holomorphic part is made of right-handed spinor
products (1.328), and the antiholomorphic part is made of left-handed spinor products (1.332),

M3 ((12),(23), (13)) oc (12)712(23)72(13)"3 ,
M3 ([12], (23], [13]) oc [12]12[13]12 23]

little group scaling implies egs. (1.330) and (1.334), i.e. that

Ti9 = —Y12 = —hy — ha + hs,
T3 = —Y13 = —hi1 — hs + ha,
Tog = —Yo3 = —hg — h3 + hy,

and that in Yang-Mills theory, for the helicity configuration (17,27,3%), M3 would not contribute
to A3(17,27,3") because it would have the wrong mass dimension. Of course, the assumption is

that in Yang-Mills theory, the coupling is dimensionless. Let us relax this assumption. In a generic

theory,
M3 ((12), (23), (13)) = Kl (12)"12(23)723(13)"13 , (1.338)
M;3H([12], 23], [13]) = Kj.[12]¥12[13]¥12[23]%22 . (1.339)

where k7 and kA

he ‘b are couplings, eventually dimensionful, in which we include internal degrees of

freedom, like colour.
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Now, the three-particle amplitude M3 must have the correct physical behaviour for real momenta,

i.e. it must vanish when both (ij) and [ij] go to zero. Since from egs. (1.330) and (1.334),
T12 + T13 + Taz = — (Y12 + Y13 + y23) = —(h1 + ha + h3) (1.340)

for hy + hy + hy < 0 we must set k4 = 0 in order for Mg“ not to blow up. Conversely, for

abc

hi + ha + hg > 0, we must set kX = 0. So we can write that in general,

M = B (12)7m—heths (13)~hi—hstha (93y=he—hsthig(_p) — by — hg), (1.341)
M3 = k2 [12]h tha=ha[gg)hatha=hi[ g)mtha=hag(p) 4 hy + hy). (1.342)

The only case we are excluding in this treatment is hy + ho + hg = 0.

Then, for a theory of several massless particles of a given integer spin s, we can replace h = =+s,
and egs. (1.341) and (1.342) have each two solutions,

M (17.2.30) =kt ()’ (1.313)
M3 (1;,2,,37) = kk, ((12)(23)(31))°, (1.344)
M2 = () (13145
M1}, 28, 30) = kg, ([12[23][31))°, (1.346)

where we have labelled particles also with their internal degrees of freedom, e.g. colour.

Since s is integer, the solutions above must be Bose symmetric. Since the spinor products are
antisymmetric, this implies that for odd s, mg’f must be totally antisymmetric under the exchange
of any two indices. Therefore, a theory of less than three massless particles of odd spin must have a
trivial three-particle amplitude and, assuming that any amplitude can be constructed out of three-

particle amplitudes, a trivial S-matrix.

1.12.4 Uniqueness of Yang-Mills

In this section, we follow sec 27.5 of ref. [5]. Firstly, we recall a general non-perturbative result, which
is a consequence of unitarity (see sec. 10.2 of ref. [16] or sec 24.3 of ref. [5]): in a unitary theory,
poles of Green’s functions, and so of amplitudes, correspond to the exchange of on-shell intermediate

states,

. i k k+1,n
limpz _zp Gu(p1, ... pa) = (21)*0* O p) P2, A+ z'eMl (MEFET (1.347)

with Py = p1 + ...+ pg. All that is needed to prove it is that a one-particle state |¢) transforms
according to an irreducible representation (irrep) of the Poincaré group, so its momentum p* may go

on-shell, with p? = m? We have been using this result, in the form of multi-particle factorisation,
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since sec. 1.5.3.

In sec. 1.12.3, we have concluded that self-interacting massless particles of odd spin s are only
allowed if there are at least three particles with a fully antisymmetric coupling. Let us examine
what additional constraints the pole structure of four-point tree amplitudes entails, by considering
the four-gluon amplitude in Yang-Mills theory. The only thing that we will assume are multi-
particle factorisation and complex momenta, so we can build four-point amplitudes out of three-point

amplitudes. We consider the amplitude M (1727374"). Little group scaling implies that
M (1234) — t~2(mthathatha) pr(1934) | (1.348)

and thus
M(1;2,354%) — (12)%[34)2F (s, t,u) (1.349)

3
where a, b, ¢, d are the colour indices. Since an amplitude has mass dimensions, 4 — 51/} — (G, where
Y is the number of spin-1/2 fields and G is the number of spin-1 fields, M (1234) is dimensionless,

while the mass dimension of F is [F] = [M]™*.

On the pole in the s-channel, the amplitude factorises as

- '3-!'- S-QQ ?.‘% + o .s—l-
st ’M{:{
e (5 eI 4t

i 1=

Figure 1.24: s-channel pole factorisation of four-gluon amplitude.

The intermediate state P = —(p; + p2) = p3 + ps goes on-shell with positive helicity in order for
M (1727 P) not to vanish. Then

lim,_,o iM(1727374") = — -~ fabe feed (1.350)

Then we analytically continue [k(-P)] =1 [kP] and use (2P)[P4] = —(21)[14] and [3P](P4) = [34](41),
—i (1234
s (12)[14][34](41)

lim, o iM (17273747 = fabe feed (1.351)
Since (41)[14] = s14 = s23 = t, we have

1
lim,_,o F*(s,t,u) = - fabe feed (1.352)

Note that P? = 0 = (12)[21] = (34)[43] and consistently the three-particle amplitudes imply that
[12] = (34) = 0.

On the pole in the t channel, the amplitude factorises as
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Figure 1.25: t-channel pole factorisation of four-gluon amplitude.

Both helicities contribute to the intermediate state P,

i(P2)3 i i[P4]? i[3P)® i i(1P)
(23)(3P) t [41][LP]  [23][P2] t (41)(P

3
hHltﬁo ZM(17273+4+) 4> fdae febc

i (P2)3[P4]? [3P3(1P)3 o
= 1\ meppne T Epgenes |7 1859
1) 2)
Since,
P=p +ps=—(p2+p3) = P> =0 = (14)[41] = (23)[32], (1.354)
then

for [23] = (14) =0, only 1) contributes,
for (23) =[14] =0, only  2) contributes.

We use (1P)[P3] = (14)[43] and (2P)[P4] = (21)[14], and rewrite the two terms of eq. (1.353) as

A2 (2[4 (122047 ()eni]
U o - P emmepr T s oser 0 Y
2) = [221]21?[]231] = (12)*[34]? Uaa - (12)°B4F° = Ny (1.356)

[23][21](12)2 $ (1223]

In either case, we get the same contribution, thus

: abed 1 ade rebc

limy o F*(s,t,u) = —tf 1. (1.357)
S

The u-channel intermediate state is obtained from the ¢-channel one, by swapping 3 <+ 4 and ¢ — d,

SO
1
lim, o F* (s, t,u) = — foc fbe. (1.358)
SU

Unitarity implies that the four-point amplitude should only have single poles in each channel, but

the residue in one channel always has a pole in another channel.
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Since [F] = [M]™*, we can write

1
—g"(3). (1.359)

Fzzbcd ¢ —
(5:%,0) ut

1 abed S
i (;)JF

bearing in mind that since s 4+t 4+ u = 0, the two ratios s/t and u/t are related.

Then we Taylor expand f and g,

1 oo
Fade(S,t,U,) — 7 Z fabcd( ) Z gabcd( ) 7 (1360)
St =o
where negative values of n are not allowed, else we would get poles stronger than 1/s or 1/u. The
s — 0 limit implies that fgbed = — fabe feed n the u — 0 limit, s = —¢, so gated = — face febd,
In the ¢ — 0 limit, u = —s, so
1 o0
hmt OFabcd S t U 7 Z (fabcd )ngzbcd)(t) fadefebc (1361)
SO -
ade ebc __ Z ( abed ngzbcd)(i)n ) (1362)

Since the left-hand side is a constant, this implies that

f;leCd — (_1)”ggb0d =0, for n>0, (1.363)
fadefebc — f(()zbcd abcd fabe]cecd + faCEfebd (1364)

that is, the Jacobi identity,
fabefecd + facefedb + fadefebc =0. (1365)

Computing how the four-gluon amplitude factorises on all the possible two-particle channels, we
have found that the only allowed colour algebra is the one of SU(N), so Yang-Mills theories are the

only interacting theories with massless spin-1 particles.

1.13 On-shell recursion relations

In the introduction, we said that the helicity amplitudes allow us to streamline the traditional work-
flow: Lagrangian — Feynman rules — Feynman diagrams — scattering amplitude — squared am-

plitude — cross section - by eliminating the bottleneck in squaring the amplitude.

In sec. 1.11, we took stock of that, by listing the basic processes of ete™ colliders and hadron

colliders to which we have applied that streamlining procedure.

In this section we introduce a stark departure from that workflow, either traditional or stream-
lined: the on-shell recursion relations allow us to compute amplitudes without making any reference

to a Lagrangian or to Feynman diagrams.
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That proposes the deep question of whether it is possible to construct a quantum field theory,
which is based on the fundamental pillars of quantum mechanics and special relativity, but which
does not rely on off-shell structures, as quantum field theories usually do, a sort (quoting Lance

Dixon) of quantum field theory without quantum fields.

1.13.1 BCFW recursion relations

The idea behind the Britto-Cachazo-Feng-Witten (BCFW) recursion relations [2] is to consider the
amplitude A, (p1,...,p,) as an analytic function of its complex momenta py, ..., p,. The momenta
are complexified by introducing a shift of the momenta, which preserves on-shellness and momentum
conservation, and which is linear in a complex variable z. Then the amplitude A, (p, ..., pn) becomes

an analytic function of z.

Let us shift a momentum p/ by a vector ¢*,

pi(2) =pj + 2q, (1.366)
with j = 1,...,n. In order to preserve total momentum, let us shift another momentum,
pi(z) = pi — 2q. (1.367)

On-shellness requires that ﬁf(z) = p?(z) = 0 which implies the orthogonality conditions,

¢ =pj-q=pi-q=0. (1.368)

Taking p; and p; on the light-cone,
pi=(p;,p;;00),  pi= @ p;00), (1.369)
we realise that ¢* must be a null vector in the transverse plane, ¢* = (0,0; ¢, ). But then ¢*> = —¢?,

which cannot vanish unless ¢* is complex. A solution for ¢* is

¢ =5 G ) = S0 Nl (1370

which fulfils the orthogonality conditions. Note that

(i = (a7 = 52402) (0" Np) (@) = M) Ry (1371)
whose short-hand is ¢ = )\15\]-. Of course, another solution for p* is

¢ =3 > g= Ak (1372
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Let us choose ¢ = Aid; (1.371), so the shifts become

(ﬁj(z))aa = (pj)anrZ(fZ)aa

= (D) Xa(py) + 2Xa(pi)Aa(p;)

= (Aalps) + 2Aa(pi) Na(pj) , (1.373)
Bi(2))aa = Aa(@i)Aa(pr) — 2Aa(pi) Aa(p))
= Aa(p)Na(pi) = 2ha(p)) - (1.374)

In short, we can say that the shift (1.366) and (1.367), with ¢ = Aid; (1.371), is realised through the
shift on the spinor variables,

>0

S\j = )\j + Z)\i,
(1.375)

~
= ~

/\i = /N\l — ZS\]‘,

>

J':;‘ja
=\

The amplitude A,(z) is an analytic function of the shift z above. We can use Cauchy’s theorem

and compute A(z) over a circle large enough to encompass all its poles. If A, (z) — 0 as z — oo,

then the sum of all its residues vanishes,

1 A
0 = —7{ dz (2) with radius(C) — oo
2mi Jo z

z

= A0+ X Res (A"(Z))‘ | (1.376)

2=z

where A,,(0) corresponds to the original amplitude and z; are the locations of the factorisation poles,

Figure 1.26: Multi-particle factorisation, with f’l“k =pi+...+pj(2) + ...+l

Where are the poles?” We said that unitarity implies that the poles of amplitudes correspond
to the exchange of on-shell intermediate states. So the singularities of amplitudes stem from the
vanishing propagators in the Feynman diagrams. At tree level, this means that the amplitude, or

Feynman diagram, factorises into two smaller amplitudes connected by a vanishing propagator.

The momentum PL;C flowing through the propagator depends on z only if particles ¢ and j are on
opposite sides of the factorising diagram. If both ¢ and j are on the same side of the diagram, P j

is independent of z and there is no pole.
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We choose the shift,

Pr(z) =pi+2q,  Palz) =pn—2a, 4=, (1.377)
i.e. N
A=A+ 2Ay, A= Ap,
N ~ B A (1.378)
A = A — 21, A = Ay
The factorization poles in the Z occur when Pl,k = p1(zx) + P2 + - - - + px is on-shell. Then,
k
ozﬁﬁk = (pi+zg+pe+-+p)°
= (Pig+ 29)°
— P2 +22Pi-q, (1.379)
with P, = p1 + ...+ pg. Thus the poles are at
_ Py
S 2P - q
P? P?
- Lk — Lk (1.380)

(1] Pl,k Int) (n~| PLk 1)’

using eq. (1.370). If A,(z) — 0 as z — oo, Cauchy’s theorem says that

1A, (2)

)

2=z

iA,(0) = —zk:ReS(

n—2 . . R Z . .
= =Y > Res[idp(1,2,...,k, —Plj,f)ﬁzAn_kH(P{fk, k+1,...,0)] (1.381)
h—t k=2 Lk 2=z

with Agy1 and A, g, teh amplitudes on either side of the pole. Now, z — z; with z; as in eq. (1.380),

at the pole is
Pﬁk+2zkpl,kq

Z— 2y , 1.382
g 2P - q ( )
so at the pole the propagator behaves as
zpfk — 2 (2 —2,) 2P - q = —Pﬁk(z -2, (1.383)
using eq. (1.380). Thus, the amplitude is given by the recursion relation,
n—2 . . i .
iAn(pr, - opn) = Y. > 1Ak (1,2, .k, =P =i Ane (Pl b+ 1, 0)] (1.384)

2
h==+ k=2 PLk
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with the shifted momenta to be evaluated at z = z,

P12,k2 ~
O e R
P
(P (2))aa = An(An w)\l) ) (1.385)

and the sum is over the (n—3) partitions of the n momenta into two sets, with at least three momenta
(a three-point amplitude) on the left (k > 2) or on the right (k <n — 2).

In order to complete the proof of the on-shell recursion relation (1.384), one must show that
An(z) = 0 as z — co. Let us take gluon 1 with positive helicity, and gluon n with negative helicity.

This is known as the |—, +) case. We consider the large z-behaviour of a generic Feynman diagram.

G A

Figure 1.27: Gluon line for gluons 1 and n.

Since p1(z) = p1 + zq, the red propagators 1/}31%k = (Pl + 2z (n [Py |17)) 7! grow as 1/z as
z — o0. The 3-gluon vertices are linear in the momentum. Since there can be at most one more
3-gluon vertices than propagators, the diagram can at worst diverge as z for z — oo. Then we must

include the polarisation vectors,

Il
=
>
2
=2
>
Q
—
i~
—
2
[

(¢ (1, )™ = (" - 0)™ : (1.386)

since \; = \; + 2,

(¢ (s Do = (€ P)us ——f'@)f>~i. (1.387)

Ay (0) A (pn)
since j\n = S\n — z:\l. So the amplitude falls off as 1/z as z — oc.

Of course, this diagrammatic argument will not work for the |+, +), |-, —) and |+, —) cases. As

3

expected, the |+, —) case diverges as z° as z — 0o0. A clean argument for the |+, +), |—, —) cases,

for which the amplitude also falls off as 1/z as z — oo, was given in [25] in terms of a hard particle

moving in a soft background field, without making reference to Feynman diagrams.

1.13.2 MHYV amplitudes

Now, we are going to use the on-shell recursion relations (1.384), with the shift (1.378) and ¢ = An1,
to compute the MHV amplitudes.
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Firstly, we note that the spinor products,

(p1) = (p1) + z(pn)
[pA] = [pn] — z[p1], (1.388)

with p # 1,n, are linear in the shift variable, while the spinor products (pi =)(pn) and [pl] = [p1]
are not changed by the shift. The shift implies also that

(al) = (nl),  [In] = [In]. (1.389)
Further, the shift vector,
1
=3 <1+\ A ‘n+> : (1.390)

which fulfils the orthogonality conditions (1.368), is proportional to the polarisation vectors,

» Ty (At nT)
e (p1,pn) = \/§<n1> B \/§<nl) ’
(L[ ~* |n*)

e *(pn,;1) = —W. (1.391)

In accordance to the fact that ¢" is made of the un-shifted spinors, ¢ = A1, the polarisation vectors
(1.391) are not deformed by the shift,

G—HL(ﬁlapn) - G—HL(plapn) ) 6_#(25117191) - 6_#(]%7191) . (1392)
Conversely,
(n*|y#|17)
6_‘U“ D , Pn = —_——
(b1, n) V2]
2zpH

n (1.393)

where we used Gordon identity. Likewise,

R 1= [y*|n~)
+up _ <
€ (Pn,p1) V2

22pf

= E+'u(pn,p1)— \/§<1n>

(1.394)

Thus, € *(p1, pn) and €™ (p,, p1) must be shifted in order to keep the orthogonality conditions in

place.

Firstly, we use the on-shell recursion relations to prove Parke-Taylor formula by induction. We
know that it holds for three and four gluons. We assume that it holds for (n — 1) gluons. Let the

negative-helicity gluons be j and n. The same argument about the lack of multi-particle poles of
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MHYV amplitudes by counting negative helicities we discussed in sec. 1.7.3 applies here. Thus, the
contributions with 3 < k < n — 3 vanish.

We are left with £ = 2 and kK = n — 2. Let us suppose that k =n —2. If j =n —1, then the A,
amplitude may have at most one negative helicity gluon, and it vanishes. So, let us take j < n — 1.

For the A,,_; amplitude not to vanish, h must be positive,

. 5 . N A _
iA, (17,25, ... ,...,(n—=2)T, =P )ﬁ2A3<P+, (n—1)%n"), (1.395)
with . 5
. P, (n—1
iAzs(PT,(n— 1" n") = —i [P, (n - )A] — (1.396)
[(n —1),2][nP)
which can be non-vanishing only if
(P(n — 1)) = ((n —1),) = (aP) = 0, (1.397)
but we know that

because the right-handed spinor ), is not shifted. Let us see how this implies that all the spinor
products in Ag(f”, (n — 1)*,77) vanish. The vanishing of the propagator,

0= P12,n72 = p’lf*].,n = [(n - 1>7ﬁ]<n7n - 1> ) (1399)
implies that [(n — 1),72] = 0. Likewise, using momentum conservation,

’[f)+> []5, (n—1)] = jbl,n—Q ‘(n — 1)*> = _(z}n +pn_1) ‘(n _ 1)*>
= —[a") [P (n-1)] =0, (1.400)

PP = —(p, +p,) 7)== |(n = D) [(n—1),8] = 0, (1.401)

so all the spinor products in Az(P*, (n — 1)*,7) vanish, making A(P*, (n — 1)*,7) vanish too.
We are left only with k& = 2. Let us suppose that j > 2 (the j = 2 case is treated in app. H.28).
For the A3 amplitude not to vanish, h must be positive,

AL (P3G (= 1)), (1.402)

Ay(1F, 27, — P
(4 3( 9 ) )P1272
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with

iAs(it,2Y,—P7) = —i

since 3\1 = A1, and where we analytically continued, [k(—P)] = i[kP)].

Also, since A, = An, by induction,

, P+ o+ = - 7)) = 4 )’
i A, (PH3Y T, (=) aT) = (P3)(34) - (n — 1), a) (A P)

A (n)’ A
(P3)(30) (0 — 1).n)(nP)

= 3 ,

SO

< \4 : 3
A1, (= 1)) = bn) @, 12

Then we note that

~

(nP)[P2] = (n~| P|27) = (n"|p, +p, + 22}
(3P)[P1 = (37| P|17) = (32)[21],

27) = (n1)12],

and the amplitude becomes

iA, (1", (n—=1)T )
= (jn)* [r2f”
(=) (n)[12](=(12)[12])(—(23)[12])(34) - - - ((n — 1), m)
G
- (12) - (n1)”

which proves Parke-Taylor formula.

1.13.3 NMHYV six-gluon amplitudes

(1.403)

(1.404)

(1.405)

(1.406)

(1.407)

NMHV amplitudes, defined as the ones with three negative-helicity and (n — 3)-positive helicity

gluons, appear first in the six-gluon amplitudes, which in fact display three different NMHYV helicity
structures, Ag(172137475767), Ag(172737475767) and Ag(172737475767), up to cyclicity and

reflection symmetries. However, using the photon decoupling identity, it is possible to show that

Ap(112737475%67) is related to the (+ + — + ——) structure (see app. H.29).

Let us use the on-shell recursion relation to compute Ag(17273%475767), the computation of the
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other two NMHYV helicity structures is left to apps. H.30 and H.31.

iAg(112137475767)

4
S>> A (1,2, .k, P;,C)P2 iAo (Pl b+ 1,
1,k

h=+ k=2
with the shift (1.378), with n = 6. The k = 3 case does not contribute, since
Ay (1%,27,3%, P =0,
for either h. Further, the k = 2 case,

I, = iAs(1F, 27, 15;2) ZA5(P12,3+,4*,5*,6*),

2
P12

and the k = 4 case,
I = z’A5(i+,2+,3+,4‘,—P‘) zAg( P.57,67),

are related by parity
)1+> VN ’6*> ’2*} AN ‘5*> ’3+> AN ‘4*> ,
) o3 5 ey 6 e ).
We compute the k = 2 case. Using eq. (1.380), the pole is at

512 _ <12>
(67 Prall)  (62)

9 — —

thus 12)
12)12 =P, P, - @ ‘6+><1+‘
Further,
R A 12
T S [ S §62§ )
We already computed A3(17,2%, —P7) in eq. (1.403)
[ L S A i
[2P][P1] S12 [34][45][56] [6P]
_ b [12]° ((6P)[P3])?
s12 [2P](P6)(6.P)[P1] [34][45][56][6P](P6)

where in the second line we multiply and divide by (6P)3.
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(1.408)

(1.409)

(1.410)

(1.411)

(1.412)

(1.413)

(1.414)

(1.415)

(1.416)



Then using eqs. (1.414) and (1.415), we can make the shifted spinor products explicit

(6P)[PK) = (67| (p, + +W?fc‘>, vk, (1.417)
[56] = [56] + <égi[m] _ 21 (’%(62?1) ) , (1.418)
A IDAT (12)
(6P)[P6] = (6P)[P6] + <6—2><6P>[P1]
= o)+ g 60
S16 1+ S26 + g;i<62>[21]
= Se12. (1.419)
Thus,
L - i b ! (671 + ) 137
(62)]241(61)[12] [24](12) @ (g, +p)1[57)
[34][45] s612 j
671 (p, +p,)137)°
O (12 BB 2| (p, + ) 5 (1.420)
Using the parity symmetry, we write the £ = 4 term,
. (17 (pg + p,) 147)°
= R @3 @) 5001 (571, + ) ) .
and finally
) (botatg—r—amy (671 (p, +9,)137)°
HolT2T8570) =y 1) B Bl sers 2| (p, 1 ) )
+ Wl + ) 117 ) (1.422)

1 (23)(34) [56] 61501 (2 | (g +9)157)

The Ag(172%37475767) amplitude had been derived already by Mangano, Parke and Xu [27]. The
advantage of the expression above is that it is shorter and with a simpler singularity structure,
although it contains a spurious singularity, given by (27| (p, + p,) [57) — 0, which may occur when
pe+p1 is a linear combination of py and ps. The singularity is spurious because although the amplitude

is finite in that kinematic point, individual terms of the amplitude are singular (see the discussion
in [9]).
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1.14 Gravitation

Let us consider general relativity and the Einstein-Hilbert action, without matter fields,

1
Sgr = 53 / d*z\/—gR, (1.423)

where R = g"'R,,, is the Ricci scalar, with R, the Ricci curvature tensor, and k? = 87Gy, with
Newton’s constant G . The variation dg,, of the gravitational field g, yields the gravity part of

Einstein’s equations,

1
GMV - R,ul/ - iguVR . (1424)
If we expand g, around the flat space 7,,,
Guv = Nypv + ﬁhuy ) (1425)

we may consider h,, as the graviton field. Since R, involves two derivatives of the field g, all

terms in the expansion of the action will display two derivatives of h,,,, i.e. schematically,

JI 28]
1
Sen = 513 /d4:1;[h82h + Kh*O’h + KPR 0%h + .. ] . (1.426)

After gauge fixing (e.g through the De Donder gauge), the hd?h term will yield the graviton propa-
gator, h?0?h the three-graviton vertex, h30h the four-graviton vertex, and in general h"~19?h will
yield the n-graviton vertex. The graviton field h,, has spin 2, and its polarisation tensor is given

simply by the product of two spin-1 polarisation vectors,

ei’(p) = €i(p)ei(p) - (1.427)

The graviton is massless, so it has two helicity states.

Computing amplitudes out of the Feynman rules for the graviton vertices is very complicated,
even for the simplest, i.e. the four-graviton tree amplitude. Yet, at fixed helicities the outcome is

very simple,

(12)7[12]
(13)(14)(23) (24) (34)2

Miree(17273%4) = (1.428)

In the spirit of the on-shell recursion relations, we will bypass Einstein-Hilbert action, the Feynman

rules for the graviton vertices, and compute graviton amplitudes directly on-shell.

1.14.1 Three-graviton amplitudes

In sec. 1.12.3, we have seen that for a theory of massless particles of a given integer spin s, little

group scaling and dimensional analysis arguments fix uniquely the dependence of the three-boson

81



amplitudes on the spinor products,

tree /1 — — + <]'2>5 °
239 x ()
tree 1+ + — [12]3 ’
Miree(1t, 2+ 3 )o<<[23”31]> .

Gravitons have helicity = 42, so the same arguments fix the three-graviton amplitudes to be,

tree(1— o— <12>6
M3™(17,2 ,3+)0<W,
Miree(1F,2%,37) [13[]122[]23]2 (1.429)

In particular, we fix the three-graviton amplitudes to be the square of the three-gluon amplitudes

(we will see later why),

IMJeE(17,27,3) = (AT, 27,37)°,
iMEee(1t 2% .37) = d(iAYee(1t, 21, 37))%. (1.430)

1.14.2 Uniqueness of General Relativity

Examining the three-particle amplitudes in sec. 1.12.3, we have already seen that Bose symmetry
severely constrains theories of self-interacting massless particles of integer spin s: they must have
an even spin, odd spins being only allowed with at least three particles and a fully antisymmetric
coupling. Now, we want to use four-particle amplitudes to show that the graviton, and so linearised

General Relativity, is the only allowed self-interacting massless particle of (even) integer spin s.

Using the on-shell recursion relations, a four-particle amplitude can be constructed through at
most two of the three channels. For example, let us suppose that the shift involves particles 1 and 4.

They must be on opposite sides of the on-shell propagator. That excludes then the si4 channel.

Of course, for self-consistency, the four-particle amplitude computed in this way must not depend
on the shift. We shall use it as a selection criterion for possible theories. Let us consider a self-
interacting massless particle of integer spin s, whose three-particle amplitudes are given by (stripped

off of couplings)

Ms(17,27,3%) = *! (z<2<31>2<>31>> , M;3(17,27,37) =0,
Ms(17,2%,37) = 5! (—i[2[;]2[]31]> , Ms(11,27 37) =0, . (1.431)
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In the Tutorial, we compute the amplitude My(17,27,3%,47) using the [47,1T) shift,

A=A+ 2, 3\125\1,
s . . . , (1.432)
)\4:)\4—2:)\1, /\4:)\4.

with ¢ = M1 The amplitude is un-ordered, so it has two contributions, given in fig. 1.28, which
yield (see app. H.32)

2—s
MVt 27,37 47) = ([13]%24)2)3% : (1.433)
512513514

which has the correct little group scaling.

s +
9 3 3’ =
+
i‘+ ‘:ﬁ i?‘-l' ‘: 2

Figure 1.28: Amplitude My (1",27,3",47) under |47, 17) shift.

We compute again the amplitude My(17,27,37,47) through the |27, 1%) shift,

;\12)\1+Z)\2, 3\12;\1,

. i A with ¢ = Aol . (1.434)
/\2:)\2—2)\1, )\2:>\2.
In order to do that, we can use the fact that by reflection,
MEY(at 27,37 47) = MPV (1t 47,3%,27). (1.435)

The amplitude on the right-hand side can be obtained from M, F’l) (17,27,3",47) by swapping labels
2 and 4 in eq. (1.433), so that

2—s
iMEPV (1t 27,37 47) = ([13]2<24)2)8i(812> . (1.436)
512513514
Since the computation of the four-particle amplitude must not depend on the shift,
MPV(T 27, 8% 47) = Mt 27,3 40, (1.437)

we obtain that (s14)?7* = (s12)?>7*. For this to be true, for every s;5 and s14, we must have s = 2 [29].
Note that for s = 2, the amplitude has the correct residues in all three channels.

Further, note that for (17,27,3%,4%) we obtain

(12)*[34]*

M4(1_72_a3+74+) = $19513514 )

(1.438)
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in agreement with eq. (1.428) (please check it).

1.14.3 Multi-graviton MHV amplitudes

Just like for gluons, supersymmetric Ward identities allow one to prove that the graviton amplitudes

with all-like helicity gravitons, or all but one, vanish at tree level,

Miree(1%, 2% nF) =
Miree(1% 2% nF)

9

0
0. (1.439)

Just like for Yang-Mills, tree graviton amplitudes cannot tell if they belong to a pure gravity theory
or a supersymmetric extension (supergravity).
Just like gluon amplitudes, graviton amplitudes are classified as MHV, NMHV, and so on. Tree

MHYV graviton amplitudes can be obtained though on-shell recursion relations, and expressed as the

square of tree MHV gluon amplitudes, as we will see.

In the Tutorial, we consider the MHV amplitude M!¢(17,27,3", ..., n"), and by induction we
show that it takes the form [30],

n—1
iMre(17,27,35 onty =i S0 2py - pon (T B6) (14017, 27,0, o), (1.440)
k=4

O'ESn—Q

<0k0k+1> _ _
— L 27 P O for n>4
with 8, = (20441) [ Posons o) (1.441)
1, for n=4.
and P, ; = p; + ...+ p;. In particular, for n = 4 eq. (1.440) yields
IMTe(17,27, 3%, 4%) = i[s14(i44(17,27,3%,4%))? 4+ s13(iAs(17,27,47,37))7] (1.442)

which can be shown (see Tutorial) to agree with the usual form of the four-graviton amplitude (1.428).

Eq. (1.440) has manifest S, permutation symmetry over (n — 2) gravitons, but of course the
amplitude is fully symmetric over n gravitons, so we introduce a formula [31] for the n-graviton MHV

amplitude, which is manifestly symmetric over n gravitons.

Firstly, we introduce the symmetric function,

¥l = <M JF,
L [ )
2 ik i) i)

(1.443)
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The function ¢*; does not depend on the spinors x,y. To see it, let us change = with

[ik] (k') (ky) = [iK](ka! (ky) (ka')(iz)
2 ik i)~ 2 (k)i (i) (i) (k) (1.444)
By Schouten identity,
(iz)(kx') + (ik)(z'z) + (iz ) (zk) = 0, (1.445)
thus we get
s i) h) | RGeSl ) s

(i) (k) iz (1) (iy) (i)

and the second term vanishes by momentum conservation.

The functions ¢';, form an nxn symmetric matrix ¢, out of which we construct the (n—3) x (n—3)
minor determinant |q§|§f£ obtained by deleting rows ¢, 7, k and columns p, ¢, 7. Further, we introduce

the coefficient,

3 1
Ak =g = . 1.447
= TR (1.447)
Then we write the amplitude M,, as
M,(1,2,....n) = (ij)*M,(1,2,...,n), (1.448)

where ¢ and j are the negative-helicity gravitons and M, is helicity independent. M, can be written
as [31]

M,(1,2,...,n) = (=1)""sgn(ijk) sgn(rst)cipc"|o[ 7 (1.449)

rst

where sgn(ijk) = sgn(o (4,5, k,1,2,...,4,/,F,...,n)) is the signature of the permutation which moves

1,7, k up front in the sequence.

In order to check that M, is symmetric under S,, permutations, it is enough to show that e.g.
ijk ije
Cijk| Olrg = —Cigel DLt » (1.450)
for any ¢ # k. For this, it is convenient to introduce the function,
fly = (i1){i2)¢';. (1.451)

Then

S = Syl gy gy s BRIk (Ry)
Z;f] = ;( D) <.71><J2>gé; GG Gy~ (1.452)

which is straightforward if we choose x = 1,y = 2. Thus, for a given column 7, the rows 7 in the n xn
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matrix f all sum to zero. By the properties of determinants, this implies, e.g. that |f|

and so that cijk|¢]ijk =

rst _CZJ£‘¢’:‘JS§

- iy
;L”jst = _|f|Z~Jst

Let us check that M, reproduces the known expressions for three (1.430) and four gravitons (1.428).

M3(17,27,3+) —

My(17273%4%) =

(13)(14)(23)(24) (34)* 7

imply that
M;(1,2,3) = ! (1.453)
ST (12)2(23)2(31)2 '
My(1,2,3,4) = [12] (1.454)
BT (12)(13)(14)(23) (24) (34)2 '
For n = 3, ng =1, and we get eq. (1.453).
For n = 4, let us choose the minor |¢|50, = ¢'1, with z = 3,y = 4,
! - [12](23)(24)
' (12)(13)(14)
]\Z = —023402349011
1 12
_ [12](237 (24 (1.455)

in agreement with eq. (1.454). We

(23)7(34)2(24)7 (12)(13)(14) ’

can check that the result does not depend on the choice of the

minor, by choosing |@| 2 = %4 with z =2,y = 3,

and using momentum conservation,

: 234
the minor |¢|5; = 01y,

[41)(12)(13)
(41)(42)(43)
_012301239044
1 [41](A27 (13}
(12)2(13)#(23)2 (41)(42)(43) ’

(1.456)

[41](43) = [12](23) we get again eq. (1.454). If, say, we choose

[14]

@ )
02340123<P14

1 [14]
(12)(23)(31)(23)(34)(42) (14)

(1.457)

and using momentum conservation we get yet again eq. (1.454).
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1.14.4 Kawai-Lewellen-Tye relations

Let us write the four-graviton amplitude as in eq. (1.442),
iMy(17,27,3%,47) = i[s14(1A4(17,27,3%,4%))* + s15(i44(17,27,47,37))?] .
Using reflection and the photon decoupling with respect to gluon 2, we write
Ay(1,2,4,3) = Ay(1,3,4,2) = —A4(1,2,3,4) — Ay(1,3,2,4). (1.458)

Then we use the BCJ relation (1.235), and we write eq. (1.458) as

A4(1,2,4,3) = — (1 + S”) A4(1,2,3,4)

S13
= MA,(1,2,3,4). (1.459)
S13

Thus we can write eq. (1.442) as

. oA . 513 S14\ . A . oAl

iMy(17,2 ,3+,4+) = i(sg— + srg— )iA4 (17,2 ,3+,4+) 1A4(17,2 ,4+,3+)
( S §/1’3/)

= —ispiAy(17,27,37,47) iAy (17, 27,41, 3"). (1.460)

This is the simplest example of Kawai-Lewellen-Tye (KLT) relations. They were derived in string
theory, giving the n-point closed string amplitudes as a sum over products of pairs of n-point open
string amplitudes. In the low-energy limit, the n-point closed string amplitudes become tree graviton
amplitudes M,,, while the n-point open string amplitudes become colour-ordered gluon amplitudes
A,. Note however that the KLT relations are valid without specifying the helicity states, they are in

fact valid in d spacetime dimensions.

1.14.5 Colour-kinematics duality

In sec. 1.7.4, in dealing with the four-gluon amplitude (1.211) which led to the BCJ relation, we saw
that the Jacobi identity, ¢s + ¢; + ¢, = 0 has a kinematic analog, ngs + n; + n, = 0, eq. (1.223).

Writing the tree amplitude as a sum over all distinct cubic diagrams (where we have eliminated

the four-gluon vertices as in sec. 1.7.4),

Alree = 30 Cgi , (1.461)

%

BCJ proposed that every time there is a triplet of colour factors {c;,c;,c,} which are linked,
¢ + ¢+ ¢, =0, the amplitude features colour-kinematics (CK) duality if the kinematics factors
are linked likewise, n; 4+ n; + nj, = 0. In sec. 1.7.4, we have shown that four-gluon amplitudes feature

CK duality, and that is true in general for Yang-Mills (i.e. pure gluon) amplitudes.
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The gauge-dependent kinematic factors n; are of course not unique. Any shift of the polarisa-
tion vectors €(p;) — €(p;) + a;p; changes the n;’s without changing the gauge-invariant amplitude.

Examining again the four-gluon amplitude (1.211),

)

4 o/ MsCs  MiCp NyCy
iy = —igh("eCe 4 T M)

the non-local shifts,
ng — Ng + SA, ng — ny +tA, Ny —> Ny + UA (1.462)

which are like adding a contact term to each channel, will also leave the amplitude invariant, since
cs +c +c, =0.

For the n-point amplitude (1.461), if we have a set of numerators which fulfil the CK duality,
¢ +c¢j+c, =04 n;+n;+n, =0, and we shift the numerators, n, — n; + A;, with the constraint,

cil;
= 1.4
25 =0 (1.463)

%

the amplitude is invariant. The A;’s are like gauge functions, since they drop out of the amplitude.

Once we have the numerators fulfilling the CK duality, let us see what happens on the four-gluon

amplitude (1.211) with the formal replacement,

Stripping-off the coupling constant, we get
2 2 2
iMy(1,2,3,4) = —i (” -+ n") , (1.465)
s u

with ny = —(ns + n,). Then we use the relation (1.233) between ng, n, and A4(1,2,3,4),

U 1
Au(1,2,3,4) = Sn = omy, (1.466)
so that
Ny = gns—tA4(1,2,3,4),
ng = —(ns+ny)

= —(1+ %) ne +tA4(1,2,3,4)

— ¢ (A4(1,2,3,4) + ”—) 7 (1.467)

S

38



and we re-write the amplitude as

iMy(1,2,3,4) = ["2 +t<A4(1,2,3 )+ )2 + (“n —tA4(1,2,3, 4))21}
- 7Z/+tA2+ﬁ}w44+}*n/ £A] %_ﬂ
_ _Zt A4 1234)>2
- ¢5A4(1234) , (1.468)
and using the BCJ relation (1.459), we can write
iMy(1,2,3,4) = —iss iAu(1,2,3,4) i44(1,2,4,3) | (1.469)

i.e. the KLT relation (1.460).

That is, using the CK duality, we have found the relation between the four-graviton amplitude
M, on the left-hand side and the colour-ordered gluon amplitude A4 on the right-hand side. As we
said for the KLT relation (1.460), eq. (1.469) does not depend on the helicities or on the dimension
of space-time.

The procedure of obtaining

n2
My =3 5, (1.470)

through the substitution ¢; — n; is called double copy. Thus, at least at tree level, we can say (in a

sense that we will make more precise later) that
Gravity C (Yang — Mills)>. (1.471)

Just like the KLT relation (1.460), the double copy carries on at higher points. However, the KLT
relations work only at the tree level, while the CK duality and the double copy are also valid at loop
level.

Further, the double copy works also with different sets of Yang-Mills numerators, n; and n;.
Suppose that the n;’s fulfil the CK duality, while the n;’s do not manifestly. Since n; and n; are valid

representations of the same Yang-Mills amplitude, we can write

with the constraint (1.463), such that the amplitude stays invariant. Since the n;’s fulfil CK duality,
they can replace the colour factor in the constraint (1.463),

A
3 ”D = 0. (1.473)

7
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Then the relation

Mlree =3 nDn : (1.474)

i
is equivalent to eq. (1.470).

In addition to combining two sets of numerators when only one fulfils manifestly the CK duality,
eq. (1.474) may be very convenient also to combine numerators which refer to different external
states, which through the double copy allows one to obtain states different from the graviton, and
finally to combine numerators from e.g. a supersymmetric version of Yang-Mills theory with the ones
of a not-necessarily supersymmetric version of it, allowing one to explore different supersymmetric

extensions of gravity.

This is an active field of research, and many theories have been shown to exhibit CK duality and

admit a double copy. For more details, we refer to the review on CK duality [12].

1.15 Scattering equations

We consider particles with complex momenta in a D-dimensional Minkowski space CM, and introduce

the configuration space ¢,, of n scattering gluons,

¢n={(p1,-..,pn) € (CM)"/ > p; =0, pi =...=p, =0} (1.475)
i=1
i.e. all the n-tuples p = (p1, ..., p,) of on-shell light-like momenta constrained by momentum conser-

vation. The gluons are also characterised by an n-tuple € = (e?l, A

,€x7) of polarisation vectors fixed

by the gluon helicities A\; = +1, with ¢ = 1,...,n. Finally, a colour-ordered n-gluon tree amplitude
in D dimensions is fixed by a specific permutation o = (oy,...,0,) € S,/Z, of the gluons, up to a

cyclic order, so we can label it as
An(pye,o) = A0, ... 0o (1.476)

We consider C = C U {0} =~ CP!, i.e. the complex space plus the point at infinity, which
can be modelled by the Riemann sphere, which is equivalent to the complex projective line CP!, i.e.
the projective space of lines in C2. Since we will need it also later, we explain very basic notions of

projective geometry in App. B.

We consider then the n-tuples (z1,...,2,) € C". Given the functions,
2p; - pj
filz,p) =) —, (1.477)
i i — Zj

the scattering equations are [34, 35]

filz,p) = i=1,...,n, (1.478)
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i.e. for a given (p1,...,p,) in ¢,, a solution is an n-tuple (z1,...,z,) such that egs. (1.478) are
fulfilled.

Let us introduce the projective special linear group PSL(2, C) = SL(2, C)/Z,, where Z5 = {1, —1},

with elements

g= <a Z) . det(g) =1. (1.479)

They are the Mobius transformations,

az+b _ A
g(z) = o d with zeC. (1.480)

If (z1,...,2,) is a solution of the scattering equations, so is (g(z1),...,9(z,)) (see app. H.44), thus

the scattering equations are invariant under PSL(2, C) maps.

We are only interested in the different equivalence classes [z; : ... : z,] of the PSL(2, C)-invariant

solutions. We define then the moduli space M, of genus zero curves with n punctures,
Mo, ={(21, ..., z.) € (CPY"/ 2z # z;}/ PSL(2,C). (1.481)

Any inequivalent solution of the scattering equations corresponds to a point in My ,,. Since PSL(2, C),
can fix three points at 0,1 and oo, My, has dimension (n — 3).
Through the Mébius invariance of the scattering equations, one can see that there are only (n—3)

independent equations. Let us consider the PSL(2, C)-invariant function,

Ulz,p) = [](z — 2)™ 7, (1.482)
i<k
with 5
-1 Y _r
U ain fi(z,p), (1.483)

(see app. H.45). Since an infinitesimal M&bius transformation can be written as §z = €y + €2 + €222,

with infinitesimal parameters €y, €1, €2 (see app. H.46), then

" oU

= U («+eaz+ea)fi(zp), (1.484)

i=1

since this must hold for every €g, €1, €2, it implies that
Zzszi(z,p) =0, m=20,1,2, (1.485)
i=1

so there are three linear relations (explicitly checked in the Tutorials) among the n functions f;(z, p),
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and thus (n — 3) independent equations.

1.15.1 The polynomial form

The scattering equations can also be put in polynomial form [36]. Let us consider the function,
gm(2,0) = Y2 fil2,p) s (1.486)
i=1

which vanishes for m = 0, 1,2. from eq. (1.485). Making g,, explicit, and using the antisymmetry of

the denominator,

gn(5p) = 5 DL — o) 2B (1487

i i ci T &

Then we write the power difference as

m—1
2t =2 =z — ) Y, AR, (1.488)
k=0
so that .
1 m- el
gm(z,0) = 52> 2i-p; ) P (1.489)
i A k=0

The n X n matrix Z,,; = z;"*, with 0 < m <n —1, 1 <7 < n is non-singular since

detZ = [ (z— =), (1.490)

1<i<j<n
is the Vandermonde determinant. So the (n—3) equations g,,(z,p) with 3 < m < n—1 are equivalent
to the (n — 3) independent equations f;(z,p).

However, a more convenient form of the equations g¢,,(z,p) is obtained by considering the set
A={1,2,...,n} and any subset S C A, with

Ps =D Di, zs =] 2. (1.491)

€S €S

Then for 1 < m < n we define the polynomials

hm(z,0) = > P§zs, (1.492)
sCA,|s|=m
. ) n n!
where |s| = m is the number of elements in S and the sum runs over the =
m m! (n —m)!
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subsets S of A. For m = 1, we have n subsets of one element,
S = {i}, i—l,...,n,

Z;ﬁ’zz —0 (1.493)

where we used on-shellness. For m = n — 1, we have n subsets of (n — 1) elements,

S={1,...,i—1i+1,...,n}, i=1,...,n, ps=> pj=-pi 2s=][%:
J#i J#i
w0
hn—l(z7p) = z%ﬂzl Tt Ri—1%41 " R = 07 (1494)

=1

where we used momentum conservation and on-shellness. For m = n, we have one subsets of n

elements,
S = Aa bs = Zpla s = H Zi (1495)
=1 =1
0
hn('Z?p) - ( i)Q H Zj (1496)
=1 j=1

where we used momentum conservation.

The non-vanishing polynomials h,,(z,p), with 2 < m < n — 2, are homogeneous polynomials of

degree m in the variables zq, ..., z,. E.g. for m = 2, we have (Z) subsets of two elements. Then

:{Zaj}a 1§Z?j<n Z#]a pS:pz+pj7 Z8 = ZiZj,

ho(z,p) = (pi+p;)* 2 2 = stzlz] : (1.497)
i#j

The scattering equations f;(z,p) are equivalent to h,,(z,p) =0, with 2 <m <n — 2.

One can rescale the polynomials as hm 1= hmzﬁoof; and write h (z,p) =0, with1 <m <n-—3.
Bezout’s theorem states that the number of common solutions of a set of polynomials (is bounded,

and almost always) equals the product of the degrees of the polynomials.
[T deghy = (n—3)!, (1.498)

so we expect to have (n — 3)! inequivalent solutions of the scattering equations.
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1.15.2 CHY amplitudes

Let us introduce the primed product,

!

H ; = (_1)i+j+k(zi — Zj)(Zj — Zk)(Zk - Zz) H !

fa(z,p) atisp Ja(z:D)

(1.499)

which is independent of the choice of 7, j, k, and takes into account that only (n—3) of the n scattering

equations are linearly independent. Then, we introduce the PSL(2, C) invariant measure,

dz, dz, dz,

dVOlpSL 2,C) = (—1)p+q—i_r s (1500)
o (2 = 20)(20 = 20)(2r = 2)
which ensures that each equivalence class of solutions is counted only once.
We introduce the short-hand z;; = z; — 2;. We have the overall measure,
1 T d"z
al = ———
(2mi)n—3 11 fa(z,p) dVolpsr(ac)
(_ 1)i+j+k+p+q+r b;él;[q , de
= i Zik Zhei 2y . 1.501
(2ri)n—3 Zij Zjk Zki Zpg Zqr Zrp H £.(p) ( )
a#i,j,k
Under PSL(2,C) transformations (1.480), z' = g(2),
’ ’ i — Zj
Z— 2= (ot d)(cz, + ) (see app. H.44), (1.502)
i J
’ de

so as expected the measure (1.500) is invariant under PSL(2, C) transformations, while the measure

d"z and the primed product (1.499) transform as

m. - 1 n
d"z = (i:r[li(% +d)2) d"z, (1.504)
| n 1 1

H m = (Hm) H fa(?«%p)‘ (1.505)

=1

Consider the 2n x 2n antisymmetric matrix,

U= (A _CT> (1.506)
C B

with 5 5
R a#, b,
Aab: Za T Zb By =< %a = %
0, a="b. 0, a=>b
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26(1 * Do

,  a#b,
Za — Rb
Cop = " e p; (1.507)
oy Fabi gy
j=Lita % = %

where €, = €(p,) are the polarisation vectors. The Pfaffian of ¥ vanishes (see app. H.47). However,
the (2n —2) x (2n — 2) matrix lIfg obtained by deleting rows and columns ¢ and j has a non-vanishing

Pfaffian, and we fix the polarisation factor,

(_1)i+j

E(pv E>Z) = 2n/2(22 _ Zj)

PE(WY), (1.508)

where the normalisation is chosen in agreement with the one of the colour matrices, Tr(T%T?) = §°.

Upon using the scattering equations (1.478), FE(p, ¢, z) does not depend on the choice of ¢ and j.

Then, we introduce a cyclic factor,

1
C(o,2) = , (1.509)
(201 = 202)(Zo2 = 203) - - - (20, — 20
where ¢ = (1, ..., 0,) is a permutation of the n labels. Under a PSL(2, C) transformation, g(z) = 2,
E(p.e,z) = [[(czi + d)* E(p,e,z), (1.510)
i=1
C(0,2) = [J(czi + d)* C(o,2). (1.511)

i=1

Considering an integration contour ¢ that wraps around all the inequivalent zeros of the scattering
equations (1.478), the colour-stripped n-gluon tree amplitude in D dimensions is given by the contour

integral,
i An(p,e,o) =i 74 Q) C(0,2) E(p, ¢, 2). (1.512)
JC

The n-graviton tree amplitude in D dimensions is obtained by replacing the cyclic factor with the

polarisation factor,
i My(p, €) = zjf Q) E(p, e, 2)?. (1.513)
c

Since the Pf(¥)? = det(V),
det (%)
E P ——— 1.514
2 = o (1514)
Using egs. (1.504), (1.505), (1.510) and (1.511), we see that egs. (1.512) and (1.513) are PSL(2,C)

invariant.
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Introducing the n x n matrix ®, with

2pa'pb
7 N9 a b)
of, |Go—ap 7
Pap = 57" = n op (1.515)
Zp _ Z a g a:b,

j=1,j#a (2a — 2)?

and the (n — 3) x (n — 3) matrix @;{;ﬁ, obtained by deleting rows i, 7, k and columns p, ¢, r, we define

(I)mk

pqr

det' ® = (—1)iH7thtpratr (1.516)

Zij Zjk ki Zpq Zqr rp
Note the analogy with the (n — 3) x (n — 3) minor in Hodges’s construction of the n-graviton MHV
amplitude (1.449).

Then using the Jacobian,
1

J(z,p) = ——, 1.517
(o) = (1517)
we can re-write the contour integrals as sums over the inequivalent solutions Z(J ,withi=1,...,n,

and 7 =1,...,(n — 3)!, of the scattering equations (1.478),
i Ap(p,e,o) =i Z J(z(j),p) C(o, z(j)) E(p,e, z(j)), (1.518)

(n—3)! 4 4
e)=i Y. J(V.p) BE(pe D). (1.519)
Under a PSL(2,C) transformation, g(z) = 2,

J 1.520
p = oy ge) 70 (1.520)

thus, using egs. (1.504), (1.505) and (1.520), each term in egs. (1.518) and (1.519) is PSL(2,C)
invariant.

As already discussed when squaring Yang-Mills, in composing two spin-1 polarisation vectors
besides considering the spin-2 polarisations, €4’ (p) = € (p)e’(p), we could also obtain spin-0 states.

They are the dilaton and the antisymmetric tensor field (often called B field in analogy with electro-

magnetism),
%Mh:%ﬁ@€@+&@d@L (1.521)
%@%ikﬁwd@—ﬁ@d@k (1.522)

In eq. (1.519), we can have also the dilaton and the B-field as external states after replacing the
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cyclic factor with a polarisation factor with € # e,

n—3)!

(
i My(poe) =1 > J(Y.p) E(p,e,29) B(p, ¢ ). (1.523)
=

However, note that in amplitudes with only gravitons as external states, dilatons and B-fields can
only appear in loops (just like supersymmetric partners do), so at tree level an n-graviton amplitude

cannot tell if it comes from pure Einstein gravity or from gravity coupled to dilatons and B-fields.

The doubling procedure is reminiscent of the double copy and the CK duality we have examined
in sec. 1.14.5. Further, the number (n — 3)! of inequivalent solutions of the scattering equations,
reminds us of the number of independent colour-stripped amplitudes in an n-gluon amplitude, after
using the BCJ relations in sec. 1.7.4. In fact, it is possible to show [37] that the scattering equations
fulfil CK duality.

The doubling procedure works also in the reverse direction, i.e. by replacing the polarisation
factor with a cyclic factor,
(n—3)!

i An(p,0,0) =1 > J(29,p) C(o,29)) C(5,29). (1.524)

=1

The amplitudes A, (p, o, &) are the double-ordered colour-stripped amplitudes of a bi-adjoint scalar

theory with cubic vertices. Its Lagrangian is

1 A
E — §(au¢ab)(a,u¢ab) _ g’]lf‘alliwag} fb1b2b3¢a1b1 ¢a2b2 ¢a3b3 , (1525)
with a = 1,...,dim(G). Its amplitudes andmit a double colour decomposition in terms of A, (p, 0, ),
Mp)=X"2 S > (T T) tr(T0 - TPn) Ay(p,0,5). (1.526)

O'GSn/Zn &Esn/zn

1.15.3 Three- and four-gluon amplitudes

Let us consider the n-gluon scattering equation for n = 3. Then there is only 0!= 1 inequivalent

solution. There are only 3 variables, which can all be fixed by Md6bius invariance,
2 =0, 2P =1, zél) =00. (1.527)

The minor =1 and the Jacobian (1.517) is

ijk
qbqu

J(z,p) = (21 — 22)? (22 — 23) (23 — 21)*. (1.528)
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The cyclic factor (1.509) is

1

(21 - 22) (Z2 - 2’3) (23 - 21) '

C(o,2) =

The polarisation factor (1.508) is (see app. H.47)

€1 €2 €3 D1+ €2+ €3 €1 - Po + €3 - €1 €2+ P3

(21 - 22) (Zz - 23) (23 - Zl)

E(p,e,z2) = V2
So,

iAY“(pe,0) = iJ(z2W,p) C(o,2) E(p,e,zV)
= V2i (€1 - € €3-D1+ €3 €3 € Pyt €3-€ €3-D3),

which yields the usual 3-gluon vertex.

For n = 4, the scattering equations are

] U t _ 0
n—z m—z A—z
S t U
+ + =0,
29 — 24 29 — 23 22— 24
U t S
+ + =0,
23 — 21 Z3 — Z9 Z3 — 24
t U S
=0 ,
24 — 21 Z4 — 29 Z4 — 23
out of which we obtain the cross ratios,
(21 - 22)(23 - 24) __Ss
(21 — 23)(22 — 24) u’
(21 — 22)(23 — 24) __9S
(Zl — 2’4)(23 — ZQ) t ’
(21— 2s)(z2—2)  w
(21 — 24)(22 — 23) t
There is one equivalent solution, which can be taken to be
S
zgl) =7 zél) =0, zél) =1, zfll) =00.

The polynomial form of the scattering equation (1.497),

0= hQ(Z,p) = (2122 + Z3Z4) S+ (ZQZg + 2124) t+ (2’123 + 2224) u,

(1.529)

(1.530)

(1.531)

(1.532)

(1.533)

(1.534)

(1.535)

and momentum conservation, s +t + u = 0, help to relate several equivalent forms of J(z,p) and

E(p,e 2).
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1.15.4 Global residue

In general, finding the solutions of the scattering equations (1.478) may be very difficult. How-
ever, there is a way of computing eqs. (1.512) and (1.513) without knowing the explicit solutions of
eq. (1.478). In this section, we will follow ref. [38]. Let us re-write eq. (1.512) as

(—1)i+j+k d"z Zij ik Rki

2mi)=3 JedVol [ fa(zp)

aijk

i Ap(pye,o) =1 C(o,2) E(p,€,z). (1.536)

As we have seen, we can go from f,(z,p) to the polynomial form h,,(z,p) through the Vandermonde
determinant (1.490),

(-1 [ dz E%_Zj)

i Ap(p,€,0) =1 2ri)5 Jb dvol -2 C(o,z) E(p,¢,2). (1.537)
I1 hm(zp)
m=2
We can use PSL(2,C) invariance and fix three variables,
2 =0, Zp—1 =1, Zp = 00. (1.538)
Then
dz d n— d n n— n
JVol — 21 dzp—q dz _ dz d22 1 dz (1.539)
(21 = 2n1)(2n1 — 2n) (20 — 21) 22
Further, we can invert z,,
1 1
= — = dz, = —— dw = —z] dw, (1.540)
w w

so we can write the contour integral as

1 €,2,0)dzo N ... Ndz,_
i) = o | RS (1541
with
I (2,) = dh’;ii’p) i (1.542)
and
R(p,e, z,0) = — z) [[(2i — zj) C(0,2) E(p,e, 2) s=0 (1.543)
< oo

Since the polynomials h,,(z,p) are linear in each variable z,, A, (z,p) yields the coefficient of z, in

hm(2,p). The local residue at a solution zV) is defined as

ReS(An)’Z(j):

1 j{ R(p,€,2z,0) dza A ... Ndz,_o (1.544)
s

(2mi)n—3 ho(z,p) - by _o(z,p) 7
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where the I'g is a small (n — 3) torus in the variables z, ..., 2,_ around z"), with orientation,
d arg(he) Ad arg(hs) A ... Ad arg(h,—2) > 0. (1.545)

Then, we can define the global residue as

(n=3)!
GRes(A Z Res(An)].0) - (1.546)

R(p,€,z,0)

ho(2,p) -+ hy_o(2, p)
basis in this vector space is {e;}, and let us consider two polynomials P, and P in the vector space.

The ratio

is defined in a finite-dimensional vector space. Let us suppose that a

In algebraic geometry, the global residue of the product of two polynomials defines a symmetric
inner product GRes(P; - P») = (Py, P»). Since the product is non-degenerate, there must be a dual
basis A;, such that (e;, A;) = d;;. In order to compute the global residue of one polynomial P, one

can decompose the polynomial on the {e;} basis, P = 3; a;e;, and decompose the identity on the

dual basis, 1 = > b; A;. Then
GRes(P) = GRes(P - 1) Zal ;- (1.547)

This allows one to compute the global residue of a polynomial without knowing the solutions to the

scattering equations. Now, R(p, €, z,0) is a rational function, but it can be put in polynomial form.

The procedure sketched above was introduced in ref. [39], and is reviewed in ref. [38].

1.16 Amplitudes for all masses and spins

In this section, we want to consider general properties of amplitudes with particles of arbitrary mass
and spin. In doing that, we will realise that the little group is even more important than what we

could surmise from its scaling.

As we said in sec. 1.2.3, since

w0 puoty 0 X¢(p)X*(p)
p=n" = (puau 0 )— <)\a(p)5\a(p) 0 ) (1.548)

the little group U(1) transformation,
Ao = €920 N, = eT2), (1.549)
leaves p invariant. For complex momenta, A, — tA, with ¢ a complex number, and we can take the

little group as GL(1).
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Taking as a reference momentum,
k* = (F,0,0,F) = (2E,0;0,0),

where the right-most expression is in light-cone coordinates, eq. (1.65) implies that

Ao(k) = V2E (é) (k) = V2E <(1)> ,

then rotations about the z axis are

A — (€0 N R
¢ 0 e 2]’ ¢ 0 e2)’

and we get eq. (1.549).
Note that using Euler angles 6, ¢

p" = (F, E'sin(0) cos(¢), E'sin(f) sin(¢), E cos(f)) ,
pt =9p"+p* = E(1+cos(d)) = 2E cos*(0/2),

pL = p" +ip¥ = Esin()(cos(p) + isin(¢)) = 2E sin(0/2) cos(0/2)e

SO

PL _ 2F sin(0/2)e'®
N (0/2)e",

the spinors (1.65) and (1.71) can be taken as

E0(p) = Aalp) = ZF (i) NG () ,
L (p) = alp) = Zg_ (i) — V2E () ,
£ (p) = Ni(p) = \/2— (‘pp> — V2B (‘) ,
L
N/

&) = Xp) = —= (;m> = V2E <_63> .

with ¢ = cos(0/2), s = sin(0/2)e’*. As we saw in sec. 1.2.3,

~ s
Pai = Aa(p)Aa(p) = 2E < ) :

cSs SS
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has rank 1, since det(\(p)Xa(p)) = 0.

In sec. 1.2.3, we also saw that for massive particles, p,, has rank 2, and we can write it as the

sum of two rank 1 matrices,

Pai = Aa' (P)Aar (P) + A2 (D) Naa(p) (1.561)

where I = 1,2 in \,/(p) labels the spin 1/2 representation of the little group SU(2). However,
the \,/(p) are not uniquely associated to a given momentum, since we may perform the SU(2)

transformation,

)\al — W[JAGJ 5\(1] — (W_l)lj)\aJ . (1562)

For massive particles of spin S > 1/2, we may label states of spin S as symmetric tensors of rank
2S5 (see app. H.40 and ref. [33]). Then amplitudes for spin-S massive particles are Lorentz-invariant

functions of symmetric rank-2S tensors.

We raise and lower indices with the SU(2) antisymmetric tensor (1.73), with €%¢,, = 6%.. Now,

Paa = Ao’ (D)Nar(p) = €170’ (D)Na” () (1.563)

and since €*? A, Ags = det(A)e,s, we can formally relate A% (p) to A,/

padS\M = EKJ)\GKS\(IJS\&I = EKJAGKS\dJEaBS\b[ = EKJ)\QKGJIdet(S\) = det(S\) . )\al,
Paar = e haE NN = e NN €PN = excsha det( Vel = —det(N) - AL (1.564)

Further,

PaaD™ = exsda N’ XN ey,
_ EKJ)\aKS\aJEGbAbIEabS\ELGIL ’
= eKJdet(/\)eKIdet(S\)e‘]LqL
= det(N)det(N\)oxLo%

= 2det(A)det(N). (1.565)
As a reference momentum, we take k* = (m,0,0,0), then we can perform a boost to the momentum,

P = (E, |plsin(0) cos(¢), |plsin(0) sin(¢), [plcos(0)) , (1.566)

with p? = E? — |p|*= m? (see app. H.40 and ref. [33]).
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1 0
We can expand )\,! in a basis of two-dimensional spinors <0) and <1> in the little-group space,

() = (m —ms*)
J (p) =

VE+ps JE—-pc
= \(p)® <1> +Na(p) ® <0> , (1.567)
0 1
with
Aa(p) = VE +p (;) , Nap)=VE-—Dp <_CS > : (1.568)
Likewise,
W () <\/E——ps \/E——l—pc>
¢ —VE—-pc JE+ps*
= \lp)® <(1)> — 7a(p) ® (1)> : (1.569)
with

Xa(p) = E+p<;>, Ma(p) = E—ﬁ(j)- (1.570)

Aar(p) = EIJS\dJ(p)

(4 ) (D0
= A L ~ ¥ 1.571
= Xlp) ® 0 + 7a(p) ® L] (1.571)

so that using eqs. (1.567) and (1.571), we obtain a representation of eq. (1.563),

Paa = )\al(p)NdI(p)
= Xa(P)Xa(p) + 1a(p)7a(p) , (1.572)

as the explicit sum of two rank 1 matrices.

Note that

det(\) = det(\) = VB2 — p? (¢® + 55*) = m, (1.573)

so that egs. (1.564) and (1.565) imply that paa A = mA, paaA® = —mA;" and peap® = 2m?2.
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Furthermore,

AP = ~Mc®n = —EpVE—p () (‘1) —01> <—> .

AR)(p)] = ey = VE + pyVE —p ( < _1> <_S)=—m,

i.e. (An) = [#\] = m, which vanishes in the massless limit, as expected.

Note that in the high-energy limit,

m m
E+p—2F, \/E_p:\/E—er_)\/@’

A () = Aalp) + O(m/VE),
S\M(p) — S\d(p) -+ O(m/@) 3

i.e. they are reduced to the usual A, and \; spinors (1.556) and (1.557) of the massless case.
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Chapter 2

Loop Amplitudes

2.1 Unitarity

2.1.1 The optical theorem

The S matrix is defined as
S=1+:T,

where T' represents its non-trivial part,
(fIT i) = 2n)* 6*(ps —pi) M(i — f),

where p;(py) are the momenta of the initial (final) states.

Unitarity implies that
1=S"S=1—iTH(A+iT)=1+i (T -TH+T' T,

thus,
—i (T-TH=T"T.

Using the completeness of the Hilbert space over one-particle and multi-particle states,

an/dnn (Xo|X,) =

where dlI,, is a short-hand for
3

=1 <2E>

in the unitarity relation (2.4), we obtain the optical theorem,

M@ = )= M*(f — i) =i Z/dPSn M = X )M*(f — X,.)
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where the n-body phase space is
dPS, = dIl, (2m)* 0*(pi — po,),  Withpy, =D p;. (2.8)

In particular, if |¢) = |f) = |A) from the unitarity relation (2.4), written as
2Im(T)=T"T, (2.9)

we obtain

2 Im(M(A — A)) = Z/dPSn IM(A = X)) (2.10)

The optical theorem relates amplitudes on the left-hand side to squares of amplitudes on the right-
hand side. In its most general (2.7) or specific |i) = |f) (2.10) sense, it is a non-perturbative
statement. As such, it must hold order by order in perturbation theory. When used in a perturbative
expansion of the amplitude in the coupling, it relates higher-order terms on the left-hand side to

lower-order terms on the right-hand side.
Let us take e.g. 4—,5— and 6— gluon amplitudes as expansions in the strong coupling constant

9;

My = @M + ¢*MP + " MP + . (2.11)
Ms = @M + MY + g MP + . (2.12)
Ms = g* M + "M + ¢ MP + ... (2.13)

We expand out the amplitudes in the optical theorem (2.10), and we write down the coefficients at

order ¢2, g%, ¢° and ¢,

21m (M") = o0, (2.14)
2 Im(MY) = / dpPS, MO (2.15)
2m(M?) = [aps, (MM + M) + [ apsy a (2.16)
2m(M%) = [ aps, M<2”M(°)+M<°”M(2)+M(1”M<”)

+ / dpSy (MM + MOt D) + / dPS, MO MO (2.17)

Eq. (2.14) states that tree amplitudes are real (taken as functions of real momenta). Eq. (2.15) states
that the imaginary part of the one-loop amplitude is related to the product of tree amplitudes, whose

intermediate state X5 is a two-particle cut. Diagramatically,
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? T, @ = /QI_PS,! f

Figure 2.1: Relation of the imaginary part of the one-loop amplitude to the product of tree ampli-
tudes.

In eq. (2.16), also the three-particle cut appears. In eq. (2.17), the four-particle cut appears and

SO Oon.

Considering now Feynman diagrams, the imaginary part of a Feynman propagator can be written

as
1 1 1 1

)= 5

If we write the propagator through the principal value P,

Im(——m — . 2.18
m<p2—m2+i6 p? —m?2 + e p2—m2—ie> ( )

1 1 . 2 2
g~ LU Ta) Fimet —m?), (2.19)
then we get
1
Im( ) = —mo(p* —m?), (2.20)

i.e. the propagator is real, except where it vanishes, that is when a particle goes on-shell. Thus, an
amplitude is real, unless some propagators vanish. So, the imaginary part of loop amplitudes must
come from intermediate states going on-shell. This is in agreement with what we found from the
optical theorem.

In sec. 1.12.4, we have mentioned that in a unitary theory, poles of Green’s functions, and so
of amplitudes, correspond to the exchange of on-shell intermediate states. This means that single-
particle states and bound states (like e.g. positronium in the amplitude of et e~ scattering) appear
as isolated poles.

Let us consider now the amplitude as a complex function of its momenta, in particular let us
examine its behaviour as a function of the Mandelstam invariant s;o = (p; + p2)? for two particles of

masses myp and ms.

(5

Je

Figure 2.2: s15 complex plane, with branch point at s;.

so = (my + mgy)? is the threshold for the creation of the two particles. For s15 < 8¢, intermediate

states cannot go on-shell, so the amplitude is real, and we can write

M{(s12) = (M(s12))" - (2.21)
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Then we can continue M to the whole complex s;5 plane. For s15 > sg, eq. (2.21) implies that

Re <M(512 + ZE)) = Re (M<812 — ZE)) y
Im (M (s12 + i€)) = —Im (M(s12 — ic)), (2.22)

So there is a branch cut starting at s;» and we can define the discontinuity across the cut as
Disc (M(s12)) = 2i Im (M(s12 + i€)) . (2.23)

A consequence for massless particles is that branch points are located at vanishing values of the

Mandelstam invariants. Eqgs. (2.14)-(2.17) can be re-read as

Disc (M{”) =0, (2.24)
Disc <M£1)> =1 /dP82 MiO)TMio) and so on. (2.25)

Eq. (2.24) states that tree amplitudes have no branch cuts.

2.1.2 Feynman tree theorem

A final comment about propagators: a particle goes on-shell when p? = (po)? — [p]* = m?2, i.e. when

p’ = +E,, with E, = v/ |p]2 + m?. Writing,
p* —m® +ie= (")’ — E2 +ie = (p° — E, +ic) (p° + E, — ie), (2.26)

we can write Feynman’s propagator as

1 1
Dp =

- R __ ), (2.27)
p?—m?+ie 2E,'p" —E,+ie p'+ E, —ie

corresponding to the poles

From QFT1, we know that a retarded propagator has poles below the real axis at p° = +F, — ie,

2N ]/;\ﬁ%

~Gp-le I Ep-Ce

? 1 1

Dr = . .
R 2Ep(p0—Ep—|—ie pO—l—Ep—l—ie>

(2.28)
Conversely, an advanced propagator has poles above the real axis at p° = +E, + i,
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"Fp-t:‘e i EP-I'TG

) 1 1

Dy = -
4 2Ep<p0—Ep—ie p0+Ep—ze)’

(2.29)

So we can write Feynman’s propagator in terms of either an advanced or a retarded propagator, e.g.

) 1 1
Dp=0D - . 2.30
r=Dat e G e B ) (2:30)
Using
1 1
=P imé(p’ — E 2.31
o (pO_Ep)ﬂFm (P’ = Ep), (2.31)
we can write Feynman’s propagator as
T 0
Dp=Das+ —0(p" — E,). (2.32)
EP

In a loop amplitude, one can replace Feynman’s propagators with eq. (2.32), and then realise that the
term proportional to D 4’s only drops out of the integral (e.g. see the one-loop two-point function in
sec. 24.1 of ref. [5]). One can then replace back D4 = Dy —J, such that all the terms of the integrand
are products of Feynman’s propagator and at least one d function. That is, one has decomposed the
loop amplitude into tree amplitudes. Feynman tree theorem states that this procedure can always

be implemented.

2.2 One-loop amplitudes

One-loop n-point amplitudes admit trace based and multiperipheral colour decompositions that we
review shortly in the Appendix D. Using them, we limit ourselves to discuss colour-stripped ampli-
tudes Ag}l(l, co,m).

In D = 4 — 2¢ dimensions, a one-loop n-point amplitude can be reduced to scalar integrals with

four, three and two internal propagators (and also evantually five, for the 2¢ dimensions),

K; K, K,
) B K K
AY =< & +£C%ZS< £ Le (& + R, +0(0
¢ N t v
kZI k, K, K,

Figure 2.3: Decomposition of a one-loop amplitude into scalar integrals.
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dPe 1
LKy, Ky, K3, Ky) = / 2n)P CU—F )2l — K — )2 (( + Kb)? (2.33)
dPe 1
I3(K1, Ko, K3) =/(27T)D PR )UK (2.34)
L(K) :/(SW)KD gz(éiK)z. (2.35)

where the K; represent the sums over the partitions of the external momenta into four, three, or
two sets, one per vertex. The coefficients b;, ¢;,d; do not depend on €. R, is a rational part, that
cannot be obtained from cuts in four dimensions, as we will discuss later. In the case of massless
propagators, tadpole integrals, i.e. with one propagator, vanish in dimensional regularisation, but

they occur if the propagator is massive.

O

Figure 2.4: Tadpole integral.

Because of the 2¢ dimensions, also pentagon integrals, i.e. with five propagators, may appear.

The bozes, i.e. the scalar integrals with four internal propagators, can be further decomposed as

2

—

\ N 'd

L -wesybox  3-wase box  Z-wass bared  2- sy wyy 4~ waye Lo

Figure 2.5: Box scalar integrals which may contribute to the one-loop amplitude.

If each K; contains at least two particles, such that K? > 0, the box is termed a four-mass box,
since each vertex is characterised by a time-like K?, as for a massive particle. If one K contains
only one particle, such that K2 = 0, the box is termed a three-mass box. If there are two K’s with
only one particle, we have two-mass boxes (easy or hard according to the locations of the one-particle

K’s). If only one K contains at least two particles, we have a one-mass box.

So the one-loop n-point amplitude decomposition is

~ (2~ \\
3 5 & 2
AV =z di™ [ sa ] TeZah] [za
v 7| ) 1 . Y 4 =

+Z&;i"‘/:[ +ZZC;A ¢ Lo + Ry +0(9

Figure 2.6: Decomposition of a one-loop amplitude into scalar integrals, including the explicit de-
composition of the box integrals.
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The computation of the one-loop n-point amplitudes is then reduced to the problem of the com-

putation of the coefficients b;, ¢;, d; and the rational part of R,,.

2.3 The unitarity method

In deriving the optical theorem from unitarity as described above, we assumed that the intermediate
states are on shell, with real momenta and positive energies. As we saw, this implies that the

imaginary part, or the discontinuity, of an amplitude can be evaluated through two-particle cuts.

Let us consider the discontinuity in the channel s _,, = Pﬁm,

with P ; = p; + ...+ p;. Through

the two-particle cut, we can write

: , dP¢
Discla, . (A00) = (2 [ 55 87(0) Ao~ pr, - s 05)

) 5+(_€2) Agzolm+2(_€2_h27pm+1> <+ Pny E}ILI) ) (236)

where (o = ¢; — Py, and 67 (k) = 6(k*) 0(k°), which enforces that the intermediate states are on-
shell, with real momenta and positive energies. The loop momenta with the two d-function, which

fix (2 = (2 = 0, yields the two-body phase space typical of two-particle production.

The idea of the unitary method is that the information from the unitarity cuts can be compared
with the cuts of the one-loop decomposition, in order to determine the coefficients b;, ¢;, d;. Gener-
alised unitarity consists in relaxing the conditions on the intermediate states, which need not have
real momenta or positive energies. Then, up to four cuts and so four intermediate states are possible.
In four dimensions, no more than four cuts are possible because each cut entails a condition of the

form (¢ — K;)? = 0. So four cuts suffice to determine the four components of the loop momentum £~

2.3.1 The quadruple cut

Let us consider the quadruple cut. Triangles and bubbles do not contribute to it, since they do
not have four propagators to cut. Thus, quadruple cuts are useful to determine the coefficients
d;. Further, each box is in a one-to-one correspondence with a specific quadruple cut, because
they are characterised by the same partition of the momenta into four sets K, Ky, K3, Ky, with
Ky 4+ Ky + K3+ K4 = 0. Let us partition the momenta as in the figure below,
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The discontinuity through the quadruple cut is

. . d*¢
Discrs(Al) =i (2m)" [ 55 6°(8) a°(6) 0*(5) 8% (¢ AV AP AP AP 27
where the four cut loop momenta are
ly lby=10,— P j; U3 ="0y — Pji1m ; by="ls— Py =0+ Py, (2.38)

with Ky = Py j, Ko = Pji1m, K3 = Pyi1k, K4y = Piy1n, each cut imposing a constraint,
G=06=06(=0=0, (2.39)
with

AgO) = (_gly Pl,]'7£2) Ag(]) = (_627 Pj+17m’€3) ’

(2.40)
AP = (=ly, P ) AP = (—la, Peyan, ).
If we take the differences,
B — =10~ 13=10—103=0, (2.41)
three of the constraints become linear,
2 51 . Plyj = P12,] ) 2 62 . Pj+l,m = Pj2+1,m 3 2 63 . Pm+1,k = P31+17k, . (242)

One can solve the four equations for the four components of ¢{'. The three linear equations have
a unique solution, ¢? = 0 provides at most two solutions. So one can expect at most two discrete
solutions, di™, for ¢§'. Then £, ¢4, ¢4 are determined by eqs. (2.40). So the two solutions are given
by

dim = AP () AP () AP () AP (). (243)

The discontinuity through the quadruple cut is then given by
Discy (AL)) = aim 1™ (2.44)

Up to a Jacobian, which comes from converting the loop integral d*¢ over the real part of C* to an
integral over the four contours which encircle the propagator poles in the quadruple cut, but which
is immaterial because it cancels out on the two sides of the equation for Discy (Aﬂ), the solutions

di™ define the leading singularities of A% (although, in spite of the name, the di™ are not singular
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at all). The solution is then taken to be

d4m
9 ’

(2.45)

such that

n:1

Discrs(AL)) = d'™ 1™ (2.46)

The solution for generic values of the P’s, and thus for a generic four-mass box, is provided in ref. [40].

It is convenient to consider specific helicity configurations, and use the counting of (negative)
helicities as a selection rule on the mass boxes which may contribute. For example, let us consider

the quadruple cut of the four-mass box of a NMHV amplitude in fig. 2.7,

— I3
TN LIS/
4
=i )~
Y ST
> e
+-+ .t

Figure 2.7: Quadruple cut of a four-mass box of a NMHV amplitude, where we have labelled in blue
the negative helicities.

We see that the tree amplitude in the lower left vertex has only one negative helicity, and vanishes.
The reason is that there are four tree amplitudes, all with more than three legs, so there must be
eight negative helicities, while the four-cut NMHV amplitude only has seven, four from the cuts
and three from the external legs. We can repeat the counting for a MHV amplitude with the same

conclusion.

Thus, for MHV and NMHV amplitudes, the four-mass box coefficients d*™ vanish. They con-
tribute to amplitudes which have at least four negative helicities, thus at NNMHV level and beyond.
Likewise, for MHV amplitudes three-mass box coefficients d*™ vanish, because there must be at
least seven negative helicities (the tree three-point amplitude only needs one), but there can be only

six, four from the cuts and two from the external states, as in fig. 2.8.

o +
I R
-\ \‘_\.’+
+A e
‘e
A<
~PATT N

Figure 2.8: Quadruple cut of a three-mass box of a MHV amplitude.

Two-mass boxes contribute to MHV amplitudes, however the coefficient d*™" of the hard one
vanishes, for which the massive K are adjacent. We can see it through a triple cut which puts the
massless vertices into one tree amplitude, as in fig. 2.9. There are three tree amplitudes, all with
more than three legs, so there must be six negative helicities, while there are only five, three from

the triple cut and two from being a MHV amplitude.
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Figure 2.9: Triple cut of hard and easy two-mass boxes of a MHV amplitude.

Five negative helicities suffice to the easy two-mass box, for which the massive K are on opposite
vertices, because wherever we place the triple cut there is always a tree three-point amplitude, which

only needs one negative helicity, so one needs a total of five, see fig. 2.9.

To summarise,

dm =P = PP =0, for MHV amplitudes, (2.47)
d'™ =0, for NMHV amplitudes. (2.48)
By counting negative helicities, one can also show that the amplitudes A(1%,2%,... n*, which

vanish at tree level but do not at one loop, have no cuts at all. They are only made of finite, rational
terms.

As a particular example, we consider the computation of a one-mass coefficient d'™ of the MHV
amplitude Agl}(l_ 27 37 47 51) (see sec 6.3 of [9]). There are five one-mass boxes, as in fig. 2.10,

% ¢ A ¢ % o O A
| st 0 s s

-

Figure 2.10: One-mass boxes contributing to the MHV amplitude AL (1= 2= 3+ 4+ 5+),

where the massive leg contains two momenta, K;; = P; + P;, however, the reflection,
AM(1= 27 3+ 4t 5ty = —all(27 17 5+ 47 3%), (2.49)

relates I(K51) to I(Ka3), and I(Ky5) to I(K34), and one needs to compute only three mass-boxes,
e.g. I(Ki2), I(Ks3) and I(K34). As an example, in the Tutorials we compute 7(K7s).

2.3.2 Triple and double cuts

The triple cut is defined by
G=0=0r=0. (2.50)
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Figure 2.11: Triple cut.

It receives contributions also from box integrals, as we have seen in the example of the two-mass
boxes for MHV amplitudes, so the box contributions must be subtracted before the triangle coefficient
¢; can be computed. Likewise, the double cut receives contributions from box and triangle integrals,

which must be subtracted before the bubble coefficient b; can be properly identified.

We shall not consider here how the triple and double cuts are computed. More details, and

references, can be found in sec. 6.4 in [9].

2.3.3 The rational term

Finally, there is the rational part R,. There are various ways of computing it. So far, we have con-
sidered cut momenta in four dimensions. Because in dimensional regularisation the loop momentum
is in D = 4 — 2¢ dimensions, one way is to deal with the cut momenta in D dimensions, taking
€ < 0 and treating the (—2¢) dimensions as a fifth dimension. This approach, termed D-dimensional
unitarity, needs also a quintuple cut, but not always: the measure has the d=2¢/ term, which yields
an integral of O(e). This can be discarded, unless there are (—2¢) components of the numerator,

which yield a 1/e term.

Another way of computing R,, is to use the on-shell recursion relation on the (integrated) one-
loop amplitude. Schematically, we can write A% = C,, 4+ R,,, where C, labels the four-dimensional
cut-constructible terms. C),, comes from branch cuts, and so it is made of logarithms, dilogarithms

and 72 terms.

Let us consider a complex-z dependent shift on the one-loop amplitude, AV (2) = C,,(2) + R (2).
In sec. 1.13, we have seen that the z shift on the tree amplitude yields poles corresponding to
the multiparticle factorisation of the amplitude into two lower-point amplitudes. In the one-loop
amplitude, the shift on C),, would yield branch cuts in z. If C, has already been computed, it is best
to shift only R, = AY — C,, — R,(2).

R,, may have physical poles and spurious poles. Since A, (z) has no spurious poles, C,(z) and
R, (z) must have spurious poles which cancel each other. Thus, the spurious poles of R,(z) can
be determined from the residues of C,(z), and can be subtracted. More details are found in the
review [41].

Based on the procedure we have outlined to decompose the one-loop n-point amplitude, and a
few more variations of it, several automated computer programs for generating one-loop amplitudes

have been developed.

In order to evaluate NLO QCD corrections to scattering processes, one needs also the correspond-

ing tree amplitudes with one more parton in the final state, and an efficient integration over the phase
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space of the additional parton. These methods to evaluate the cross sections at NLO already existed,
and put together with the automated programs for generating one-loop amplitudes, they led to a

rapid evaluation of many scattering processes at NLO accuracy, which was called the NLO revolution.

2.4 Landau conditions

In d = 4 — 2¢ dimensions, a one-loop integral with numerators and higher powers of the propagators
can always be reduced to a linear combination of scalar integrals with propagators raised to unit
powers. Let us then consider the one-loop scalar integral of the n-point function of momenta {p;}

and masses {m;},

die o 1
IO (1) s fmy}) = vEe/ 2.51
et Amad) = [ om g ae: (251)
with
j—1
i i=1
We introduce the Feynman parametrisation,

n 1 n :
= V) Hl/dajml, (2.53)
= J =

J

with n
D=3 a; ((t—q) - mf) ’ (2.54)
i=1
SO .
evee i - -n
IT(LI) = (n—1)! Py ]Hl/daj 5(1 — i;m) /ddf D™, (2.55)

We must find the positions of poles and branch points of I(}) as a function of the external momentum
{pi}. Singularities arise from zeros of D({x;}, ¢, {p.}), but not all zeros yield a singularity: in the
complex plane of ¢, isolated poles can always be avoided by a contour deformation. Singularities

occur when contour deformations cannot avoid a pole.

This can happen in two instances:

1. The pole is at an end-point of a contour of integration.

2. Two poles merge on either side of a contour. This yields a pinch singularity, as depicted in
fig. 2.12
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Figure 2.12: Pinch singularity.

The integrand of eq. (2.55) is analytic in ¢, except at

D= iai ((—q)*—=m?)=0. (2.56)

i=1

D is quadratic in ¢, thus the contour is trapped if the two roots of D = 0 merge. This occurs at

oDy _y o > ai (0—q)=0. (2.57)
ol |,

7

Egs. (2.56) and (2.57) are the Landau equations, a set of necessary conditions to have a pinch
singularity.

For ¢? # m?, we must have a; = 0. Then we can state that

S (- ) =0, (2.58)

ieC

where C' is the set of ¢ cut propagators, for which
(l—q)—mi=0, i=1,...,c. (2.59)

Multiplying (2.58) by (¢ — ¢;) we get the matrix equation,
C=—q)-(l=q) - ((=q) ((—q)) (o

=0. (2.60)

l=q) (=q) - (l—q) (L—q)) \

The system has non-trivial solutions only if the (Gram) determinant vanishes.

2.5 Feynman integrals and periods

In sec. 2.2, we said that a one-loop amplitude can be decomposed into a linear combination of scalar
integrals, with coefficients which we outlined how to determine through unitarity cuts. The scalar
integrals are evaluated and expanded as a Laurent series in the dimensional regularisation parameter

e =2 — D/2. For example, the bubble integral with massless propagators yields
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Figure 2.13: Bubble integral with massless propagators.

daPe 1
I YE€
L(p) = " /iﬂ.D/2 2 —p)?

1 1
= = +2 —log(—p*) + 6[5 log®(—p?) — 2 log(—p?®) — C; + 4} + O(eQ) , (2.61)
where
> 1
=3 — (2.62)
ik

is the ¢ value, i.e. the Riemann ¢ function at integer values of n, which for n = 1 diverges. For even

values of n, it is given by

(_1)n+lB2n<2ﬂ.>2n

n = , 2.63
2 2(2n)! (2.63)
where B,, are the Bernoulli numbers,
1 1
By=-, By=-—— 2.64
2 6 3 4 30 3 ( )
SO
2 m
= — =—, ... 2.65
CQ 6 ) C4 90 ’ ( )

Note that the coefficients of the Laurent expansion are real in the Euclidean region, where p? < 0,

and develop a branch cut, starting from p? = 0, in the Minkowski region.

The triangle integral, with massless propagators and massive external legs, yields

Figure 2.14: Triangle integral.
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D
ewe/df 1

I3(p17p27p3) = Z'ﬂ.D/Q gQ(g_p1>2(€+p3)2

2 1 1—=2
= ————— [Lis(2) — Lis(2) — slog(2%) log(——=)] + O(e),  (2.66)
A(®1, 3, p3) | 2 =)
where
Ma,b,c) = a* + b* + ¢* — 2ab — 2ac — 2bc (2.67)
is the Kallen function, and
p—i:zé, p—g:(l—z)(l—é), (2.68)
P2 P3
and
z dt z dt NP
mw:/gi Lig(z)= [ L Li, (z)=3 =, (2.69)
1t ot = k"

are the logarithm and the classical polylogarithm Li,. In particular, in one-loop integrals we need

the dilogarithm,

= dt
Liy(2) = /0 T Lia(2), (2.70)
with o
Liy(z) =} % = —log(1 — 7). (2.71)
k=1
Note that
Li, (1) = G, (2.72)
for n > 1.

Because of the massive external legs, the Laurent expansion of the triangle integral has no poles

in € (further, it cannot have branch cuts, thus it is written in terms of single-valued functions ... ).

Logarithms, dilogarithms and ¢ values are the entities which usually occur in one-loop amplitudes.
Logarithms and dilogarithms are multi-valued functions: they have branch cuts. Further, they may

depend on more than one variable.

Beyond one loop, there are several ways of evaluating amplitudes. The most popular procedure
is to decompose the amplitude into a set of scalar integrals, which are usually not all independent.
Through integration-by-part-identities (IBP), described in app. E and in app. H.49 on the example of
Higgs production from gluon fusion, one reduces the scalar integrals to a set of linearly independent
ones, called master integrals, which are then evaluated through differential equations, which we will

discuss in the next lecture.

The master integrals are Laurent expanded,

I=> 1€, (2.73)

k=ko
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with kg > —2|¢| and where |¢| is the number of loops. The coefficients I} contain classical polyloga-

rithms, more general polylogarithms, and in some cases also elliptic integrals.

Through experience, we have learned that already at two loops the coefficients I may be very
complicated. Luckily, in the last ten years our knowledge of the coefficients I has greatly improved.
That is the topic of this lecture, in which we mostly follow Duhr’s 2014 TASI lectures [44].

In I} we have polylogarithms. May we have trigonometric functions, log(7), the Euler number e,

log(log(p?)), and so on ? What kind of functions may we actually have ?

In order to answer this question, we review the properties of numbers. The fundamental theorem

of algebra states that: Every single-variable degree-n polynomial equation,
ap+a z+...4+a, 2" =0, (2.74)

with rational coefficients a; € Q, has n complex roots.

Thus, a complex number is called algebraic, over the field Q of the rational numbers, if it is the
root of a polynomial with rational coefficients. Algebraic numbers form also a field, called @, since
sums and products of algebraic numbers are algebraic and the inverse of an algebraic number is
algebraic. All the rational numbers are also algebraic: if ¢ is rational, it is also the root of z — ¢, so it
is also algebraic, so Q C Q. Then, every root {/q is algebraic, since it is the root of 2™ — ¢. All roots
of unity, 2™ — 1, and in particular i, are algebraic. The inverse of y/n, with n a natural number, is

algebraic, since it is the root of nz? — 1 = 0.

A complex number that is not algebraic is termed transcendental. However, there is a big
difference in size between algebraic and transcendental numbers: algebraic numbers are countable
(every polynomial has a finite number of roots), while complex numbers, and so transcendental
numbers, are not. Thus, it is usually difficult to show that a complex number is transcendental. One
can use the theorem of Hermite-Lindemann, which states that if z is a non-zero complex number, then
either z or e* are transcendental. E.g. e is transcendental, because e = e! and 1 is not transcendental.
7 is transcendental, because —1 = €™ and i are algebraic. Thus, also 7™ and (s, are transcendental.

With the same definitions, changing numbers with functions, the algebraic and transcendental
notions are extended to functions. E.g. /22 + 92 is an algebraic function, since it is the root of
2% — (2% +3y?) = 0. logq is transcendental for all algebraic ¢, since ¢ = €8 is algebraic.

We have seen that, among the Laurent coefficients of one-loop integrals, (; and the logarithm
are transcendental. Hermite-Lindemann theorem cannot say if the classical polylogarithms or the ¢,
values with odd n are transcendental, but they are believed to be so.

We need another class of numbers, the periods.

A period is a complex number whose real and imaginary parts are values of integrals of algebraic
functions with algebraic coefficients, over the domain given by polynomial inequalities with algebraic

coefficients. E.g.

e all algebraic numbers are periods, since \/n = / dx;

nx2<1
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7 is a period since T = // dz dy;

z24+9y2<1
a dt
1t

the logarithm of an algebraic number is a period since log g =

dty dt
The dilogarithm is a period, since Liy(z) = / e
0<to<ti<z t1(1 — ta)

all classical polylogarithms Li,, are periods;

the ¢, values, with integer n, are periods;

The perimeter of an ellipse with radii a and b is the elliptical integral,

a?x?
+ b _ p2g2

(2.75)

and it is a period.

However, e, g, 1/m, logn are not periods.

Periods are countable (because they are defined through algebraic numbers, which are countable),
and form a ring P, because sums and products of periods are periods, but the inverse of a period,

e.g. m, is not a period. Then one has the inclusion,
QcQcPkPccC. (2.76)

A theorem due to Bogner and Weinzierl [45], states that: in the (Euclidean) region, where all
Mandelstam invariants s are non-positive, s < 0, and all masses are non-negative, m > 0, and where
in addition all ratios of invariants and masses are rational, the coefficients of the Laurent expansion
of a Feynman integral are periods.

The idea is to use the Feynman parameter representation of the integral, and to show that every
term in the € expansion is an integral of a rational function over a rational domain, and thus a period.
Note that €€ and 7°/? were put in the overall normalisation of the Feynman integrals precisely to

cancel terms of vg and log 7, which are not periods.

Bogner-Weinzierl theorem answers our original question: numbers and functions which are not
periods, like log 7, trigonometric functions, Euler number e, log(log 7?), cannot appear in Feynman

integrals.

2.6 Multiple polylogarithms

We introduce now a generalisation of the classical polylogarithms, called multiple polylogarithms
(MPL). Like the classical polylogairthms, they may be defined through an iterated integral [46, 47],

dt

t—a1

G(ai,...,an;2) :/OZ G(ag,...,an;t), (2.77)
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with G(;2) = 1 and with z,a; € C, and where the a; are not all zero. In the case that a; = ...

a, = 0, we define

—— - 1
G(0,...,0;2) = G(0n; 2) = — log"(2), (2.78)

n!
where @ = (ay,...,a,) is the vector of roots, and its dimension is called the weight of the MPL. For
algebraic values of the arguments, the MPLs are periods. In general, it is expected (although not

proven) that they are transcendental.

Logarithms and classical polylogarithms are special cases of MPLs,

Loy 1 n z
Ga,...,a;2) = G(dy; 2) = ] log (1 — a) : (2.79)
G(0,...,0,1;2) = G(0p_1,1; 2) = —Lin(2). (2.80)
n—1

for which the roots are all zeros, except for Lij(z). Also the harmonic polylogarithms [48] (HPL)
defined as

H(ay,...,an;2) = /Ozdt flay;t) H(ag, ..., an;t), (2.81)
with
1 1 1
fGit) == fEL) =15 fOit) =, (2.82)

are special cases of MPLs, where the roots are equal to +1, 0, —1.

where p is the number of roots in @, which equal +1. They appear in many amplitudes at two loops
and beyond. Likewise, the two-dimensional harmonic polylogarithms [49] are special cases of MPLs,
with a; € {0,1, —y, —1, —y}. They appeared first in the computation of two-loop four point functions

with three massless and one massive leg. So are also the generalised harmonic polylogarithms [50],

z dt
G(—r,@: 2 :/ — Y@, 2.84
(-n2) = [ s Gl (2:84)
which are defined as iterated integrals over a radical,
1
(2.85)

A Jid+t)

They can be expressed in terms of MPLs by rationalising the square root via the change of variables,

t= , (2.86)
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then

dt d
_d& _ 4 2.87)
t(4+1) n
and eq. (2.84) becomes
£d 1 —n)?
G(—r,a;z) = —/ an G(c?; (1=n) ), (2.88)
rmn Ui
1— 2
with z = ( 55) . These integrals usually occur in loop amplitudes with a two-particle threshold at
s = 4m?, and where z = —%
m

Another example of MPLs are the cyclotomic harmonic polylogarithms (see ref. [44] and references
therein).
2.6.1 Other definitions of multiple polylogarithms

In the mathematical literature, MPLs are defined in a slightly more general way, with a generic base

point ag,

ant1 i
I(ag;ay, ... an;a,.1) = / I(ag; ay, ...ap_1;t), (2.89)

0 t_an

with I(agp;a;) = 1. Then
G(ay,...,an;2) =1(0;a,,...,a1;2), (2.90)

and one can easily express the I’s as linear combinations of integrals at base point zero, e.g.

az  dt
I(aop; aq; az) :/ —a I(ag;t / / —a G(ar; az) — G(as; o), (2.91)
ag - W] - W

In app. H.52, the relation between I’s and G’s is provided for weight-2 and weight-3 MPLs.
Just like the classical polylogarithms, also the MPLs can be defined through a power series,

2?1 232 . Z]?k
L1m1 ..... mk(zlu ce 7Zk:) = Z M Mk (292)
0<ni<ng<..<njp ‘1 2 k

where |z;| < 1, for the sums to converge. The Li’s are related to the G’s by

1
Lipy.om (21, -+, 2) = (=1)*G(0,...,0,—,...,0,...,0, 1), (2.93)
N—_——

Zk N——— 21 2k
mg—1 mi—1

where the number £ of indices is called the depth of the MPL.

One can show that up to weight three all MPLs can be expressed in terms of classical polyloga-

rithms. At weight four, non-classical functions, like Lis o, start appearing.
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2.6.2 Properties of multiple polylogarithms

From the integral definition of MPLs (2.77), we see that G(ay, ..., ay;2) is analytic at z = 0 when

a, # 0. In particular,

Li_r)rg) G(ay,...,an;2) =0, (2.94)
when a,, # 0, i.e. around z = 0, G(ay, . .., a,; 2z) admits a Taylor expansion in z, with a null constant
term. Further, G(ay,...,ay; z) is divergent at z = a;.

MPLs are multi-valued functions, with branch cuts that may be extend from any a; to oo, e.g.

1
o G(dy;z) = ot 10g”(1 — f) has a branch cut from 2z = a to z = o0;
n! a

e (G(0,1;2) = —Lis(2) has a branch cut from z = 1 to z = oo, but no cuts starting from 0.

If a, # 0, G(d,; z) is invariant under a rescaling of the arguments,
G(ka; kz) = G(a;z), VYkeC. (2.95)

Further, if a; # 1 and a,, # 0, Holder identity,

G(ay,...,a,;1) = i(—l)kGO — ..., 1 —ay;;1— i)G(akH, ey Oy 1) , (2.96)

k=0 z
holds Vz € C*. If z — oo, the second MPL vanishes, unless it has no a;’s, i.e. for k = n, and the
identity becomes

G(ar,...,an;1) = (=1)"G(l —ayn,...,1 —a;1). (2.97)
2.6.3 The shuffle algebra

The product of two MPLs of weight one,

Gla;2) Glb2) = [ dts I dts (2.98)

0 tl—a 0 tg—b7

can be written as an integral over the square with corners (0,0), (0,z2), (z,0), (z,2),

£ Ey2b,

@32 (23)
(5,0 | (2,5) ~E

ba<k,

Figure 2.15: Integration domain of eq. (2.98).
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which can be written as a sum over two triangles,

z dty t dty z  dty 2 dty
G(a; z) G(b; :/ / / = G(a,b; G(b,a;z), 2.99
(CLZ) ( Z) otl—a 0 tz—b+0t2—b0 tl—a (a Z)+ ( az> ( )

i.e. the product of two MPLs of weight one yields a linear combination of MPLs of weight two.

Likewise, the product of two MPLs of higher weight can be written as an integral over a hypercube,
and then split along the diagonals into iterated integrals. In fact, the product of two MPLs of weights

ny, and ny can be written as linear combination of MPLs of weight ny + nao,

G(ala---yanl;z) G(an1+1>"'van1+n2;z) = Z G(a01a"'>a0n1+n2;z)> (2100)

oce{ni}li{na}

where the sum is over all the shuffles {n; } LLI{ns} of ny +ny elements, the shuffles being the permuta-
tions which preserve the ordering of the a; within (ay, . .., a,, ) and of the a; within (an, 41, .- ., Gnyns),
while allowing for all possible orderings of the a; with respect to the a;. The number of shuffles is

ny+ng\ (ny + na)!

given by the binomial coefficient . We already introduced the shuffle in the

ni n1! ng!
context of the Kleiss-Kuijff relations, sec. 1.7.1. E.g.

G(a,b;2) G(c;2) = Gl(a,b,c;z)+ G(a,c,b;z) + G(c,a,b; z), (2.101)
G(a,b;z) G(c,d;z) = Gla,b,c,d;z)+ G(a,c,b,d;z) + G(c,a,b,d; z)
+ Gla,c,d,b;z) + G(c,a,d,b;2) + G(c,d, a,b; z) . (2.102)

The MPLs form a shuffle algebra, i.e. a vector space equipped with a (shuffle) product. The algebra

is graded, because the shuffie product preserves the weight.

Since we know that G(ay,...,a,;2) is analytic at z = 0, when a,, # 0, we can use the shuffle

algebra in order to have MPLs with non-zero rightmost index, except for G (Gn, z), e.g.
G(b,0,0;z) = G(b; z) G(0,0;2) — G(0,b,0; 2) — G(0,0,b; 2) , (2.103)
then
G(0,b,0;2z) = G(0,b; z) G(0;2) — 2 G(0,0,b; 2) (2.104)
SO

G(b,0,0;2) = G(0,0,b;2) — G(0,b;2) G(0;2) + G(b; z) G(0,0; 2)

= —Lig(}) + Liz(;) log(2) + log(1 - ) ; log?(2). (2.105)

Using the sum definition of the MPLs (2.92), one can see that they also form a stuffle algebra. Just
like the shuffle, the stuffle product preserves the weight, but not the depth. Examples of stuffle
products of MPLs as nested sums can be found in Duhr’s TAST lectures [44].
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2.6.4 Multiple zeta values

We saw that the classical polylogarithms at z = 1 yield Li, (1) = (,, eq. (2.72), i.e. the ¢ values,
which are periods and (likely) transcendental. Given my,..., my positive integers, we define the
multiple zeta values (MZV),

Gy = Ly mg (1,000, 1) = Z (2.106)

ny>...>nE>0

For my =1, (py,...m, 1s divergent.

k
Weight and depth of a MZV are defined as for a MPL. Just like the Li’s, also the MZVs admit
an integral representation in terms of the G’s, which implies that also the MZV’s are periods. Also

MZVs are common in multi-loop computations. Details about the relations among MZVs are found
in Duhr’s TASI lectures [44].

2.6.5 Hopf algebra of MPLs
log(a b) = log(a) + log(b) (2.107)

is the functional equation among logarithms. From this, all relations among logarithms can be
found. Tables of logarithms, based on numerical values of logarithms and endowed with the functional
equation (2.107), have been used for centuries. Examples of functional equations among dilogarithms

are

Lis(1 —2) = —Lis(z) —logz log(l —2) + (o, (2.108)
. 1 : 1
Lip(1 — ;) = —Liy(1—=2)— 5 log® 2. (2.109)

Eq. (2.108) will be proven in app. H.57. More identities can be found on Lewin’s book on polyloga-
rithms [51]. The number of functional equations grows rapidly with the weight, and the shuffle and

stuffle relations are not enough to account for all of them.

Since MPLs are the norm in multi-loop computations, functional equations among them are a
must have. Not only are they essential to simplify an analytic computation, or to help in analytically
continuing the MPLs, they are useful also when we are only interested in a numerical answer out of
an analytic computation, because they allow one to minimise the number of MPLs for which it is

necessary to run a numerical routine.

Now, we introduce an algebraic method that allows one to derive functional equations among
MPLs. Firstly, we define A,, as the vector space of MPLs of weight n, and the vector space of all
MPLs as

A=P A, A =Q. (2.110)
n=0

Of course, the definition as a direct sum makes sense only if there are no relations among MPLs of

different weights.
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We already know that A is an algebra with respect to both the shuffle and the stuffle products.
In general, we can view the product as a map p from A® A to A, which assigns to a pair of elements

a ® b their product a - b. We know that the product is associative,
(a-b)-c=a-(b-c), (2.111)
and distributive,

(a+b)-c=a-c+b-c,
a-(b+c)=a-b+a-c. (2.112)

Further, also A ® A is an algebra, so one can define the product by components,
(a®b) - (c@d)=(a-c)®(b-d). (2.113)

In addition, one can introduce a coalgebra, i.e. a vector equipped with a coproduct, i.e. a linear map
A: A— A® A which assigns to every element a € A its coproduct A(a) € A® A.

The coproduct must be coassociative,

(A®id)-A=({d®A)-A, (2.114)

such that if A(a) = a1 ® ag, then
(A ® ld) . A(CL) = (A ® ld) . (a1 ® ag) = A(al) ® a9 = CL171 ® CL172 ® ag , (2115)
(d®A)-Aa) = (I[dRA) - (a1 ®az) = a1 ® Alag) = a1 ® as1 ® aszz, (2.116)

and the two expressions must be the same, i.e. the order in which we iterate the coproduct is

irrelevant, so there is a unique way of splitting an element into three or more elements.

If A is equipped with both a product and a coproduct, such that A(a-b) = A(a) - A(b) then we
have a bialgebra. If the bialgebra is graded, also the coproduct must preserve the weight, i.e. the
sum of the weights of the two factors of A(a) must equal the weight of a.

A Hopf algebra is a bialgebra with an antipode S : A — A, such that

{S(a -b) = S(b) - S(a), (2.117)

pid® S) A = p(S®id) A =0.

We will not use the antipode in what follows, i.e. we will not make distinctions between a Hopf

algebra and a bialgebra. An element of a Hopf algebra is primitive if

Alz)=1®zr+z2®1, (2.118)
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i.e. it admits only the trivial decomposition. The reduced coproduct is defined as
Az)=Alzx) - (1l®r+zr®1), (2.119)

so for a primitive element z, A (x) = 0. The coproduct element A;, ; is defined as the part of the

iterated coproduct with weights (iy, ..., ).

For example, we have a set of letters {a, b, c} and a vector space A spanned by linear combinations

of words. A is graded, and the weight is given by the length of the word. We define the coproduct as
Alz)=1®z+2x®1, forx=a,b,c, (2.120)
i.e. by definition all the letters are primitive. Then

Ala-b) = Afla) - Ab)=(1®ae+a®1)- (1Rb+b®1)
= 1®(ab)+(a-b)R1+a®@b+b®a, (2.121)

A(abe) = Ala)-A(b-c)
= l®a+a®1) (1@ (b-c)+ (b 0)@L+b@c+c®b)
= 1® (abc) + (bc) ® a + b ® (ac) + ¢ ® (ab)
+ a® (be) + (abc) @ 1+ (ab) ® ¢+ (ac) ® b. (2.122)

It is straightforward to check that the product is associative,
Aa) - A(b-c) =A(a-b) - Alc). (2.123)
A bit longer, but equally straightforward is to check that the coproduct is associative, i.e.
(A®id) - A(abe) = (id® A) - A(abe) . (2.124)
The reduced coproducts are

/

Aa-b) = a®b+b®a,
Aa-b-c) = a®@be)+b@@c)+c@ (@b +(ab)@c+(ac)@b+ (be)®@a. (2.125)

The coproduct elements are

Aji(a-b) = a®@b+b®a,
Agq(a-b-c) = (ab)®c+(ac)@b+(bc)®a, (2.126)
Ajs(a-b-c) = a®((bec)+b®@(ac)+c®(ab),
Ajjp(a-b-c) = a®@bRc+bRa@c+bRc®a+a®cRb+cRa®@b+c@b®a.
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The MPLs form a Hopf algebra. In order to show it, we use the I form of the MPLs (2.89), and we

define the coproduct as

A(I(ao;al, .--,Gn;an+1))
k
— Z I(ag; aiyy - vy Qi Qpgr) ® [H](aip5aip+17‘"7aip+1—1;aip+1] , (2.127)

Ozil <i2<...<ik<ik+1=n p:()

where the a; are generic, i.e. a1 # ay ... # a, # apy1 # 0.

The various terms in the sum (2.127) can be generated through a graphic procedure [47, 52]:

e Draw a semicircle on which ag, aq, ..., a,41 are distributed clockwise, such that ay and a,,,, are

two end-points.

e Mark some points, a;,,...,a;, and draw the convex polygon with vertices ag, a;,, .. ., @i, Gni1-

k

This polygon defines the first factor in the sum.

e The unmarked points define a set of complementary convex polygons. These polygons define

the product in the second factor.

E.g. let us consider the coproduct of a generic MPL of weight one, A(I (ap; as; ag)). On the semicircle,

T (ao-8,:0,) @4 12 T(a0:0,)

we can draw polygons as follows

!

There is only one way to draw a polygon, so the complementary polygon is 1, and we get
I(ap;ay;a2) ® 1. Else, we draw no polygons, then the complementary polygon is I(ag; ai;as) and we

get 1 ® I(ap;a1;az): MPLs of weight on are primitive.
Let us consider the coproduct of a generic MPL of weight two, A([ (ag; ay, as; ag)). We get

Lo Uz

T [Qq;uuu,_;%) @4 il [Qo:"«u%;‘%)

These represent the two trivial terms, however we also have:
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%, ,_ °~Q“L
% oy X ‘ e,
L(as70) @ Thouag)  I(0i,50)® T(tr2, s0.)
At weight three, A(I(ao; ay, ag, az; a4)), we get
'y %
Thoia,,,0;0)8L 4@ Thua, 4,00,

i.e. the trivial terms, and further

Q.
Q, N
,La% ﬂ
T (059,504 © T (%, 2,,0470] T(asray0,)92(@074,,2,: )
Qe

A

T(0;9,,0,72,)0 T(x,: Qg;%) I(qn;n,%o%:cl.,)tb I(Qo;m.;q,\

T (Qg Q47 Qﬁll@ [I(QQ:Q-IT %K)I(Qz,?ﬂzi Q“!ﬁ

so in addition we also have a term with two complementary polygons.

So far, we have introduced the coproduct (2.127) of the MPL defined as in eq. (2.89), and gave
examples up to weight three through a graphical procedure. Using the relation between I and G
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versions of the MPL (2.90), one can then obtain the coproduct A(G(al, ey O z)) as long as the

roots a; are generic.

E.g. at weight two, we found that

A(I(O;QQ,al;z)) = 1(0;a9,a1;2) @ 1+ 1 ® I(0; as, as; 2)
+ 1(0;a9;2) ® I(ag;a1;2) + 1(0;a1;2) ® 1(0;az;a1) (2.128)

which implies that

A(Glai,a;2)) = Glai,a2) © 1+ 1® Glay, az; 2)
+ Glag 2) ® [Glar; 2) — Glas; as)] + Glag; 2) @ Glag; ar) (2.129)

since I(ag; ar;a2) = G(ay; as) — G(ag;ap), eq. (2.91).

In particular,

A(G(0,1;2)) = G(0,1;2)®1+1®G(0,1;2)
+ G(1;2) ® |G(0; 2) —QQQ,/I’)TQF G(0; 2) ®WO (2.130)

Since G(0, 1; 2z) = —Lis(2), we obtain
A(Lis(z)) = Lis(2) ® 1 4+ 1 ® Lis(2) + Liy (2) ® log(2) . (2.131)
At weight three, neglecting the two trivial terms we found that

A'(1(0; a1, a5, as; 2))

I1(0;a1; 2) ® I(ay; asz, as; 2) + 1(0;a3; 2) @ 1(0; aq, as; as)

I1(0; a1, as; 2) ® I(ag, as; z) + 1(0; ag, as; z) @ 1(0; aq; as)

I(

1(0;a9; 2) ® [[(0;@1;&2)](@2;@3;2)], (2.132)

0;a1,as; 2 ) ® I(@b a27a3)

+ o+ 4

which allows one to obtain the coproduct A(G (a1, ag, as; z)) at generic values of ay, as, as. Let us see

what happens if we specify eq. (2.132) to the reduced coproduct of
1(0;1,0,0;z) = G(0,0,1; 2) = —Lis(z2) . (2.133)
We obtain

A/(I(O; 1,0,0:; z)) = 1(0;1;2) ® 1(1;0,0; 2) + 1(0;0; 2) ® 1(0;1,0;0)
+ 1(0;1,0;2) ® 1(0,0;2) + 1(0;0,0; z) ® 1(0;1;0)
+ 1(0;1,0;2) ® 1(1;0,0) 4 1(0;0; 2) ® [1(0;1;0)1(0;0;2)] . (2.134)
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We need to convert the I's into G's, in particular I(a;; as, as; z) (see Tutorial), so we get

F(10,0:2) = G(0,0:2) ~ G-I COTE(0:2) ~ GOt S L log(2)
1(0;1,0;2) = G(0,1;2) = —Liy(2),
1(0;1,0,0) = —Lis(0)=0,

I1(0;1;0) = G(1;0)=log1=0. (2.135)

However,

1(1;0;0) = G(0;0) — G(B:1T, (2.136)

where G(0;0) is divergent, since z = ay. So as it stands eq. (2.134) is ill-defined, and we cannot use

it to compute the coproduct of Liz(z).

2.6.6 Shuffle regularisation

The procedure to determine the coproduct of the MPLs that we displayed in sec. 2.6.5 is valid only
for generic values of the a;’s. In order to be able to apply it for all values of the a;’s, we must first
(shuffle) regularise all the MPLs. We do it as follows:

1. except for MPLs of the type G(z,...,z;2), we use the shuffle algebra in order to express the

divergent MPLs in terms of regular ones.
2. Weset G"™(z,...,z;2z) = 0.

E.g. let us take G(z, a; z), with a # z, which is divergent since a; = z. Through the shuffle, we write
it as
G(z,a;2) = G(z;2) G(a; 2) — G(a, z; 2) , (2.137)
then G"(z,a;z) = —G(a, z; z) (see also app. H.53 for an example of a weight-3 MPL).
Note that we have already implicitly been using the shuffie regularisation. We fixed G(0; z) = log =
but according to the definition of MPL, G(0; z) should be /0 ’ Cit, which is divergent. In fact,

z dt z dt Ldt
logz= [ &= 1(1;0,2) :/ “@ —/ @ (2.138)

1t o t o t

So "
G(0;2) = / - before the regularisation . (2.139)
0
z dt Ldt .
G™(0;z) = / n —/ e log =, after the regularisation . (2.140)
0 0

Further, the regularised product of two MPLs equals the product of the two regularised MPLs, i.e.
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the regularisation preserves the multiplication (see app. H.54),
[G(@;2) G(b;2)]™ = G™(a; 2) G™9(b; 2) . (2.141)

In the general case, the coproduct is then defined replacing everywhere the unregularised MPLs with

the regularised ones. Of course, when the MPLs converge, the two definitions of MPLs coincide.

Returning to the example of eq. (2.134),

19(0; 05 2) = G(0; 2)
1"9(1;0;0) = 0, (2.142)

and we can finally write
A'(I(0;1,0,0;2)) =log(l —2) ® ; log? z — Liy(2) ® log 2 . (2.143)
Thus, re-adding the trivial terms, we have
A (Liz(2)) = Lig(2) ® 1 + 1 ® Liz(2) + Liy(2) ® ; log? z 4 Liy(2) ® log 2 . (2.144)

The generalisation to the weight-n classical polylogarithm is

log" =
k!

A (Li,(2)) = 1 ® Liy(2) + nz—:l Li,—x(2) ® . (2.145)

2.6.7 Coaction

Since MZVs are obtained by setting z = 1 in the MPLs, we know how to compute the coproduct
of MZVs. E.g. setting z = 1 in A (Li,(z)) we obtain A ({,) = 1 ® (, + ¢, ® 1. However, this is a

2
problem for even-n ( values: for example, let us consider (4 = g—o = g<22 So
2 s 2 ,
AlG) = A= 106+6o1)
2 4
= 5 1RC+CR1+26L®(G) :11®C4+<4®11+5 G ® (G, (2.146)

which is at odds with the previous formula for n = 4. We wil see later that A(ir) = in®@ 1+ 1 ® iw
would lead to similar problems. The solution proposed by Brown [53] is to introduce a ring of

polynomials in im with rational coefficients, so that the algebra A we have been dealing with in
sec. 2.6.5 is not the Hopf algebra H of the MPLs, but

A=Qin) ®H, (2.147)
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i.e. we remove all powers of i in H, but we allow the coefficients of elements of H to be also
polynomials in ¢7 rather than just rational functions. Further, we define the coaction A : A — AQH,
such that

Alir) =ir® 1 (2.148)

while A coincides with the coproduct defined in sec. 2.6.5 on elements of H. Accordingly,

2 2
All)=Gel=:601=1AE), (2.149)
has no contradictions anymore.
2.6.8 Derivatives and discontinuities
Derivatives act on the last entry of the coaction,
A(2 G)=(id® 2) A(G). (2.150)
0z 0z
Let us verify on Lis(2z) that eq. (2.150) is correct.
. . z dt . 8 . . L11 (Z)
Liy() = /0 TLi(t) = 5Li(z) =27, (2.151)
so the left-hand side of eq. (2.150) yields
0 Li 1
A5 Lia(=)) = A( “Z(Z>) =~ Lu()®1+1®Li(:)) (2.152)

while the right-hand side of (2.150) yields

(id® 2)A(LiQ(z)) = (d® 2) (Liz(2) ® 1 4+ 1 ® Liz(2) + Lii(2) ® log 2)

0z 0z
0
) J 0 .. ) 0
= Lix(2) ® 5{1 +1® %ng(z) + Li;(2) ® alogz
= 1®L117(2)+Li1(z)®1
z z
1

which agrees with eq. (2.152).
Eq. (2.150) provides a way of computing derivatives of MPLs. In fact, if G is a MPL of weight n,

0 . 9,
% G = % (ld X &)Anfljl(G) s (2154)

with u(a®b) =a-b.

9,
In app. H.55, we compute £ G(1,1+y; 2) using eq. (2.154).
Yy
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The discontinuity acts on the first entry of the coaction,
A(Disc G) = (Disc ®id) A(G) . (2.155)
Let us see how it works on G(0;z) = log z. The logarithm has a branch cut from z = 0 to z — oo.
We can write it as log(z + i€) = log|x| + ir©(—x). Then Disc(logz) = 2¢ Im(logxz) = 2iw. On the
right-hand side of eq. (2.155), we have
(Disc ® id) A(log z) = (Disc ® id) (logz ® 1+ 1®logz) =2ir ® 1, (2.156)
which is consistent with the left-hand side of eq. (2.155),

A(Disc(log 2)) = A(2im) = 2ir @ 1. (2.157)

Note that the coproduct A(im) = imr ® 1 + 1 ® iw would have created a contradiction, as mentioned

earlier.

As a further example, in app. H.56, we verify the validity of eq. (2.155) on the dilogarithm, Lis(z2),

which has a branch cut from z =1 to z — 0o, and whose discontinuity is
Disc(Liz(2)) = 2i Im(Lig(2)) = 27 log 2 . (2.158)
We can use eq. (2.155) to compute the discontinuity of a MPL,
Disc(G) = p (Disc®1id) Ay -1 G, (2.159)
with p(a ® b) = a - b, e.g. the coproduct element A;; on Lis(2) is Ay Lis(2) = Lis(2) ® log 2, then
Disc(Liz(2)) = p (Disc ® id) (Liy(z) ® log z) = 2mi log 2, (2.160)

From the coproduct on classical polylogarithms,

Ap1(Lin(2) = Lii(2) ® ;Zg:; , (2.161)
then
Disc(Lin(2)) = p (Disc @ id) (Lil(z) ® (lzg_ 1;) = 2ri (I:Lg_ ; (2.162)
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2.6.9 The symbol map

The symbol may be defined as a total differential. In fact, introducing a transcendental function Fj,

of weight n as a Q-linear combination of n-fold iterated integrals,

b b t
F, — / dlogR, o - - o dlogR,, = / ( / dlogR, o -+~ o dlogR, 1 )dlogRo(t) (2.163)

where R; are rational functions, the total differential of F;, is

dF, =3 F,, 1 dlogR;, (2.164)

where F;,_; are transcendental functions of weight n — 1. Then the symbol can be computed
recursively,

S(F,) = Z S(F; 1) ®logR;. (2.165)

For generic values of a;, the total differential of a MPL is [47]

n

dl(ag; ay, ..., an; Gpy1) = ZI(GO; Ay ey gy e ey Q) Angn) d10g<w> 5 (2.166)

i=1 ;-1 — Q;
where ¢, indicates the missing element. The symbol of the MPL is then

n a; — Q;
S([(CLO; A1y .5 Ap; an-‘rl)) = Z S([(aa aty. .- ’¢i’ <oy Qpg an-i—l)) ® 10g<a+17a) : (2167)

i—1 i—1 — G
Since the symbol is of the type log(a;)®. . .®log(a,) it is customary to use the short-hand @, ®. . .®a,.
The entries ay,...,a, of the symbol are called the letters and the set of entries {ai,...,a,} the

alphabet of the function F,.
The symbol has the properties of the logarithm,

...®<ab)®... = . Qa4+ - QbR -

e ®ad"® = n(®a®-), (2.168)
which implies that --- ® 1 ® - -+ = 0. Further, if we have a transcendental function, F,,(z1,. .., z;) of
weight n, whose symbol is

S(Fn(zl, R ,Zk)) = Z Ciq..iy Qi XX a;,. , (2169)
with ¢;, ;€ Q, and a; are rational functions of (zy, ..., 2,), then the derivative acts on the last entry

of the symbol,

S( (2.170)

02
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If Disc|;,—, is the discontinuity of F' around the branch point z; = p, then

S(Dise F(z,... ,zk)|zj:p) = Z Disc log s, |2;—p  Ciy..ipy Qi @ -+ ® @y, , (2.171)

L1yeeey in

where

. 2mi, if a;, has a zero for z; = p,
Disc log a;, |.,—p = (2.172)
0, otherwise.

However the symbol is blind to i, so if p" —1 = 0 and p,, is the n-th root of unity,

Likewise, it is blind to MZVs,
@ Gy yoymyy @00 =0, (2.174)

i.e. the symbol map is not injective. In fact, besides factors of 7 and MZVs, the kernel of the symbol
map contains also combinations of transcendental numbers [54].

We note that, up to im terms, the symbol is equivalent to the maximal iteration of the coproduct
of a function F,, of weight n,
S(F,) = Ay 1 F, modim, (2.175)
Y )
which is an n-fold tensor product of functions of weight one, i.e. logarithms, which can also be

written recursively, like the symbol,

..... 1(Fn) = Z Ay 1(Fipo1) ®@logR;, (2.176)

(ld (024 d) Al ..... l(Fn) = Z Al ..... 1<Fi,n71) & legRl R (2177)

which is consistent with the definition (2.167) of the symbol as a total differential.

Finally, since the symbol is included in a coproduct element, it inherits all the properties of the

coproduct, like e.g. the shuffle product,
S(F G)=S(F) LW S(G). (2.178)

The symbol is of great interest, because being related to the total differential of an iterated
integral, it is linked to the canonical form of the differential equations. Further, the total differential
of F,, has one less weight than F),, so it is often easier to obtain than F), itself. For example, for

many amplitudes in planar N = 4 SYM, the symbol of the amplitude is known, but the amplitude
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itself is not.

Finally, a necessary condition for two expressions written in terms of MPLs to be equal is that
they have the same symbol, but it is not sufficient because the symbol, being blind to i7 terms and

to MZVs, has a loss of information, in fact the maximal loss among coproduct elements.

Given a tensor,
T = Z Ciq..iy, Ay XK R Qi with Ciy...ip, € Q, (2179)

a function F', such that S(F') =T, exists if and only if T satisfies the integrability condition,
Z Ciy...ig, leg CLZ‘j N leg al-jH Ay R ® CLZ'j_l (024 CLiH_2 e ® A, = 0, (2180)

for all 1 < j <k — 1, and where A is the wedge product on differential forms. However, there is no

algorithm to construct such a function F'.

2.6.10 The functional equations for multiple polylogarithms

We discuss now how the Hopf algebra helps in deriving functional equations for MPLs, which are
the third-millennium analog of the logarithmic tables. In order to examine the relation between
two functions F), and G, of weight n, we decompose them into lower-weight functions using the

coproduct, and exploit the relations among the latter, assuming that they are known.

We assume that if the two functions F,, and G,, share the same reduced coproduct,
A(F) = A (G). (2.181)

then
F,=G,+)> ¢ P, (2.182)

where ¢; € Q and the F;,, are constant primitive elements of weight n. The P, ,, may be powers of ,

¢, values and Clausen values of the roots of unity,

kj) _ RB<Lin(€ik7r/]\f))7 even n (2183)

Cl,
(N Im(Lin(eik“/N)>, odd n

The undetermined constants can then be fixed by evaluating F), and G,, at fixed points.

We display the procedure on the inversion relation. At weight 1, we know that

1 1
Lil(;) = —log(l - ;) = —log(l — 2) + log(—=2) = —log(1 — z) + log z — i . (2.184)
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At weight 2, we take the coproduct element,

.1 1 1
Aus(tiah)) = T o1on()
= log(l—2)®logz —logz®logz +im ® logz
1
1(— Lia(2) — 5 log*z + imlog z) , (2.185)
where we have used the inversion relation (2.184), and that A(im) = im ® 1. Note that with the
symbol, we would have missed the im term. Since A'(Fy) = A'(Gs), the arguments on the left-

and right- hand sides must be equal up to primitive elements, which are supposed to be weight-two

constants, with coefficients to be determined,

1 1
Lip(7) = ~Lia(2) — 5 log’z +inlog 2 + aga, (2.186)

z

with a € Q. Setting z = 1, we have
(Go=—CG+al = a=2, (2.187)

thus

1 1
Liy(-) = —Lin(2) — 5 log®s + imlog z + 2G; . (2.188)

At weight three, we take the coproduct element,

1 1 1 1
A (Lis(2)) = Lin () @ log( ) @ log ()
= —log(1—2) ®logz®logz+logz®logz®logz —im ®log z ® log 2z
= Ay, 1(L13 log z— ? log z) (2.189)

The missing terms, that cannot be detected by A; ;1 must be of type (; log z, (3, (im)3. So, in order
to catch ((zlog z) terms, we look at Agj,

Do, (Lis(5) — (Lis(e) + ¢ log’s = 7 log?z)

1 1
= Liz( ) ® log(;) — Lis(2) ® log z — 3 log®z ® log 2 + (imlog 2) ® log =

— —(ﬂﬁﬁi;@§+maﬁ+xg®bw

1
—LirzT®logz — 51})@%@ log z + (izlegZ) ® log 2
= —2(®logz
= Ag,l(—Q CQ IOgZ) s (2190)
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where we have used the inversion relation (2.188), so
Lig(i) = Lis(2) + é log®z — Z;T log?z — 2(5log 2 + als + bin?, (2.191)
with a,b € Q. Setting z = 1, we have
G=G+al+bir®=a=0b=0, (2.192)
SO

1 1 '
Li3(2> = Liz(z) + 6 log®z — % log®z — 2¢,log z . (2.193)

2.6.11 Single-valued multiple polylogarithms

Single-valued functions are real analytic functions on the complex plane. Conversely, classical poly-

logarithms are multi-valued functions, of which in eq. (2.162) we computed the discontinuity,
log" 'z

Disc(Liy,(2)) = 2w (-1

However, one can build linear combinations of classical polylogarithms, such that all branch cuts

cancel. The single-valued classical polylogarithm [55] is

n-1 okp Re, oddn
P =R, [} o “logh|z| Linn(2)],  R.= (2.194)
k=0 : Im, evenn

and with B the Bernoulli numbers.

Likewise, one can construct single-valued versions of the HPLs, and more in general, of the MPLs.
E.g. the scalar integral of the three-mass triangle that we mentioned in eq. (2.61) can be written in
terms of single-valued MPLs [56], which are functions of z, z, defined as in eq. (2.68).

Single-valued MPLs form a shuffle algebra and a Hopf algebra, like the MPLs. In the last decade,
single-valued MPLs have been used to describe many amplitudes in QCD and in N = 4 SYM, like

e.g. the QCD soft anomalous dimension, amplitudes in multi-Regge kinematics, and the energy flow
of QCD jets.

2.7 Diagrammatic coaction

The coefficients of the Laurent expansion of a Feynman integral are periods. In the one-loop case,
these periods are MPLs, and it is possible to construct a (diagrammatic) coaction acting on one-loop

integrals, which works like the coaction on MPLs, order by order in the Laurent expansion [57].

The coaction on a one-loop integral can be written in such a way that all the first entries are
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Feynman integrals, while the second entries are cuts of the original integral, e.g. on a massless bubble,

A(—O—) = —O—& —CO—

Figure 2.16: Coaction on the massless bubble.

( ) c
with == (=p*)~,
€
where cr is an ubiquitous one-loop factor,

e T2(1 — e)I'(1 +¢)

_ 2.195
Cr F(l _ 26) ) ( )
C e (1 —e€) o
d ; =—= ‘.
an Ti-29 7
Further, on the three-mass triangle,
AN
Pa PZ

that we introduced in eq. (2.61), the reduced coaction (i.e. without the two trivial terms) is

A’(3-mass triangle)

z 2
p; + log(—p3) ® log% : (2.196)

Z(1 - 2)
= log(—p?) @ log(=——=2) 4+ log(—p2) @ lo
g(—p?) g(z(l _z)) g(—p3) ® log—
which shows that in the case of massless propagators all the first entries of weight one in the coaction
are logarithms of Mandelstam invariants. This is called first-entry condition. First entries are related
to discontinuities and reflect the fact, that we already treated when discussing unitarity in sec. 2.1,
that Feynman integrals with massless propagators can only have branch points when Mandelstam

invariants vanish or are infinite.

Since branch points or singularities occur when the Landau equations are satisfied, the diagram-
matic coaction formulation allows one to characterise thoroughly the pinch-singularity surfaces at

one loop.

2.8 Differential equations

The integration-by-part identities (see app. E and app. H.49) allow one to reduce the scalar integrals

to a linearly independent set of scalar integrals called master integrals. The differential equations
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in the external parameters (masses or Mandelstam invariants) provide a method of computing the
master integrals.
For n external parameters x; and k master integrals fz, one obtains a system of n first-order

partial differential equations (PDE),

Oifp(x;€) = AW (x;:€) fo(zjie), (2.197)
with ¢ = 1,...,nand B,C = 1,...,k and where A; are k X k matrices, whose entries are rational

functions of the external parameters and of e.

On the example of Higgs production from gluon fusion, which is mediated by a top-quark loop,

in app. H.50 you have seen all the main features of the system of PDEs, namely that:

e It fulfills an integrability condition,
0;AD — 9; AD 1 [AD AW = 0. (2.198)

Note that the system of PDEs can also be cast as a differential form, df + A(z;€)f = 0, where

A= Z A% dz; is a matrix-valued one-form. Then the integrability condition is dA+AAA = 0.
i=1

e it is possible to rotate the basis of master integrals,

f'=Te) [, (2.199)
where T'(z;€) is a k x k matrix. Then
AD =Ty T+ T AD 771, (2.200)
In differential forms, A is a connection,
A=@T)T'+T AT (2.201)

If A® can be rotated to an € — independent form,

AW (z;¢) = eAD (1), (2.202)

with .
AD(z) =3 Py, (2.203)

/=1

where Céi) are k x k matrices (C’t@) AB, whose entries are rational numbers, w, are L Q-linear in-
dependent differential forms, called the letters, with only simple poles in x, the system of PDEs

becomes
0ig(wj;€) = € BiAD (z;) Glajie) (2.204)
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and it is said to be in canonical form [58]. In app. H.51, the system of PDEs in canonical form is

worked out on the example of Higgs production from gluon fusion.

Parametrising the differential forms, v*(w;) = p;(A) dA, on the unit interval [0, 1], such that a line

integral is given by,

Awi = /(071) ¥ (w;) = /01 d\ pi(N), (2.205)

the solution g(z;;€) can be written as

G(wj;€) = P exp (6/

~

dA) gole), (2.206)

where P is the path ordering on the integration contour 7, and gy is a boundary term. Eq. (2.206) is
to be expanded in € ,where the n-th term in the expansion is a Q-linear combination of n-fold iterated

integrals,
v 0< A< <A <1

dA
If w; = dlog(a;(z)), where a; are polynomials in x, then p;(\) d\ = P where z; are the singu-
larities, and the iterated integrals are MPLs,

AdM A dAg /Ml A\,
o, = = G(z1,. . 2 N 2.208
/ywl v 0 )\1 — Z1 J0 )\2 — 29 0 >\n — Zn (Zl 5 ) ( )

In practice, when the system is in canonical form (2.204), we Taylor expand the vector of master

integrals,
glajie) = D €"Gml(z)), (2.209)
m=0
and the system of PDEs is solved recursively in e,

Note also that in some cases, usually when there are massive propagators, like in Higgs production
from gluon fusion examined in app. H.51, the rotation to an e-independent form introduces alge-
braic factors (square roots) in the A matrices. Then a (coordinate) transformation of the external

parameters base (x1,...,x,),

A=Az, — A= 3 A0

i=1 ij=1

oz,
" dx. 2.211
ax; x]’ ( )

is necessary to put back the A matrices in rational form.

In fact, in Higgs production from gluon fusion, after the rotation to an e-independent form and

2 2
m 1—x

a change of variables ;I = —< ) to rationalise back the A matrices, there is one external
m; x

parameter, x, three master integrals, and two letters, x and 1 + x, and the differential equation in
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canonical form is

0.G(x;€) = € 0, A(x) §(x;€), (2.212)
with

0 0 0 0 0 0
Al@y=( -1 1 0 | logz+ [ 0 =2 0 | log(l1+=x), (2.213)

0 -1 0 0 0 0

0 0 0 X 0 0 0 .

O A(x) = | — - - . 2.214
(z) L0 4|0 -20] (2.214)

0 -1 0 0 0 0

Since the letters are x and 1 + z, g(x;€) can be written in terms of HPLs (2.81), see app. H.51.

In app. H.51, you have seen how working on the maximal cut, where all sub-topologies vanish,
helps in finding the canonical form. The big questions are: when can we put a system of PDEs in

canonical form? And how?
There are no (as yet) general answers.

In the case of Feynman integrals evaluating to MPLs, there are algorithms to find a rotation
f=T(x;e€) f of the basis of master integrals to achieve the canonical form, provided that T'(z;e€) is
rational in the external parameters x. There are also algorithms to transform the external parameter

base (z1,...,x,), in order to rationalise the square roots. But those algorithms have limitations.

To further complicate the scenario, not all Feynman integrals evaluate to MPLs. There are also
Feynman integrals associated to elliptic curves. In that case, an e-independent form of A® can

sometimes be achieved.

2.9 Elliptic integrals and elliptic curves

We explore here a topic which is at the forefront of research in Amplitudes: elliptic integrals. As
discussed in sec. 2.5, the coefficients of the Laurent expansion of a Feynman integral are periods. In
the one-loop case, those periods are MPLs. At two loops and beyond, those periods may also be
elliptic integrals. This usually happens when there are internal masses, i.e. massive propagators, in
the loops. But it also occurs in massless two-loop scalar integrals with ten or more legs. Elliptic
integrals were introduced first in 1962 by Sabry in the two-loop electron self-energy. They reached
maturity in the last decade, but it is only in the last three years that a systematic study of their

properties has been undertaken.

Let us look at the paradigm case: the equal-mass sunrise integral, with p? = s,

P E;P+k|f)e.
ke

1
' :/ﬁmﬂb

(kF = m?) (k3 —m?)((p+ k1 + k2)? = m?)
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We introduce the Feynman parametrisation (2.53), perform the loop integrals and, up to an

overall factor, we get

1
I = / da1 dag dag (5(1 — a; — ag — Clg) US_% Fd_s, (2215)
0

U = a1as + azas + azay

where (2.216)
F = (a; +as+a3) Um? — ajasas s,

Note that U and F' are homogeneous polynomials of degree two and three respectively, so the inte-
gration on the domain 0 < a; < 1 with a; + a3 + a3 = 1, can also be performed on the projective

domain,
o={[a;:ay:a3 €P*®/a;>0}. (2.217)

A theorem due to Cheng and Wu states that a projective Feynman integral has the same value when

integrated over the domain,

ieS
where S is a non-empty subset of {ay,...,a,}. In practice, we may choose S = {a;}, do the integral
[day 6(1 — ay) by setting a; = 1, and we get
I= / day dag U5 Fi=3 (2.219)
0

with

U=as+az+ azas,

F=1+ay+az) Um?®—asas s. (2.220)

Dimensional-shift relations relate integrals in d dimensions to integrals in (d — 2) dimensions. In

the sunrise integral, it is convenient to compute the integral in 2 — 2e dimensions because its Laurent
oo

expansion has no € poles in 2 — 2¢, [ = Z I, €", and because the I term in the expansion has no U

n=0
term,
00 00 1
I:/ d / das — 2.221
0 2 0 4 F ( )
We can view F' as a second-order polynomial in as,
F=Ad+Bay+C=A(ay—a;)(az—a_), (2.222)

145



with

ass — (CL% +3 as + 1) m2 + D(ag)
a4 = )

2(@3 + 1) m2
D(as) = (a3 +asz+1)*> m* —2a3(ai +3 az+ 1) m?s + a3 5%, (2.223)
so we get
1 1 _1_1 L
F A(as—ay)(aa—a.) Aay—a_‘ay—ay ay—a_
1 1 1
= ( — ). (2.224)

D(a3) ‘a2 —ay az—a-

Then we can do easily the integrals over ay. The contributions at as — oo cancel each other, and we

get

" (a3 s—(a2+3az+1) m?>— D(ag))
o0 gags—(a§+3a3+1)m2+ D(as3)
[0 :/ dag
0 D(as)

, (2.225)

where D(a3) is a degree-four polynomial in az. This is an elliptic integral.

The name comes from the integral over an arc length of an ellipse. In sec. 2.5, we said that the

perimeter of an ellipse with radii a and b is

b a2 772 )

Changing variable n = b x, we can also write it as

1— k22 ?

ST with R =1 %2

1 1 — 2,.2

= 4 | da e . (2.227)
0 V(1 —22)(1 — k222)

For k? = 0, we get the perimeter of the circumference, 4 fol dy (1 —2?)71/2,

So the problem of determining an arc length of an ellipse is equivalent to evaluating the integral,

1 — k% ~ 20, _ 2 2.2
/dx ) with y*(z) = (1 — 27)(1 — k*x7), (2.228)

which is called elliptic integral. Since the square root of a quartic polynomial appears in the denomi-
nator, by analogy, the square root of a quartic polynomial, with different roots is called elliptic curve,

although, per se, it has nothing to do with an ellipse. Cubic and quartic polynomials with different
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roots yield elliptic curves, which we list here in the most used forms,

y=1+Az+B, Weierstrass form , (2.229)
v =z —1)(z—N), Legendre form , (2.230)
y? = (1 —2%)(1 - k* 2?), Jacobi form . (2.231)

In the app. G we review the elliptic curve in Weierstrass form. In app. H.61, we see how to pass from

the Weierstrass form to the Legendre and Jacobi forms.

Let us consider an elliptic curve,
E: y*=x(x—1)(z—-N\), (2.232)

in Legendre form over C = C U {o0} &~ CP! = P!(C), which is topologically a 2-sphere, and let us

take the holomorphic differential form, w = 2 The integral,

P T dt
/O w:/oo NI (2.233)

is path dependent, because the square root is double valued. The branch points are at 0,1, A\, co. We
may glue together two copies of CP! along the branch cuts and form a torus, which has genus 1, as
seen below in fig. (2.17).

o E ’ 00
-
()
. oA . n

Figure 2.17: Left panel: Sphere with the location of the branch points on it. Right panel: Two copies
of the sphere glued together to form a torus.

Figure 2.18: Closed contours on the complex plane, on the sphere and on the torus.

The integrals on the closed contours a and S,

w1 :?{ w, Wo :% w, (2.234)
a B

are (non-zero) complex numbers. They are called the periods of the elliptic curve (not to be confused

with the periods as numbers).
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The k-th homology group Hy(X) of a topological space X describes basically the k-dimensional

holes in X. The circle S;, has a one-dimensional hole.

O
Figure 2.19: Circle S.

The first homology group of the circle is Hy(S1) = Z, i.e. an abelian group, which is generated
by a closed contour av around the one-dimensional hole. Then the elements of H;(S;) can be written
as na, with n € Z, i.e. any two paths on S; differ by a path which is homologous to na, and any

P
integral / w is defined up to the addition of n ]{ w.
o

«

Since the torus 7" may be defined as the product of two circles, ' = S! x S, it has two independent
one-dimensional holes and its first homology group is H;(T') = Z x Z, which is generated by the closed
contours a and /3 of eq. (2.234). Thus any two paths on T differ by a path which is homologous to

nia + no B, for ny, ny € Z, and any integral,

P T dt
/O w= /Oo NS (2.235)

is defined up to the addition of nyw; + nows.

When the periods w; and ws are R-linearly independent, i.e. there isno A € R, such that w; = Aws,
we define the lattice,
A= {n1w1 + NoWws / niy,Ng € Z} . (2236)

A is a subgroup of C, and the quotient space C/A, i.e. the torus, is a group. The fundamental cell
D is the parallelogram spanned by the periods of the lattice,

D= {Z + t1w1 + tg&)g / 0 S tl, t2 S 1} (2237)

s
¥ fndy e,
cely,

Figure 2.20: A graphical representation of a lattice with its fundamental cell.

Meromorphic functions on C/A are meromorphic functions on C, which are (doubly) periodic with

respect to A. An elliptic function, with respect to A, is a meromorphic function f(z) on C which is
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invariant under translations by the periods wj,
flz+w) = f(z), VzeC, VweA. (2.238)

The set of elliptic functions is C(A), and it is a field. A holomorphic elliptic function, i.e. one with no
poles, is constant. In fact, since the function is holomorphic, it is bounded on the fundamental cell,
which is a compact set, but then due to its periodicity it is bounded on all of C, and by Liouville’s

theorem it is constant. Similarly, an elliptic function with no zeros is constant.

Given an elliptic function f(w), with w € C, we can examine its residue and its order of vanishing,
i.e. its number of zeros. Since f is elliptic, the residue and the order of vanishing do not change if
we replace w, by w + w, V w € A. So it is enough to consider the residue and the order of vanishing

on the fundamental cell D.

We choose the fundamental cell D of A, such that f(z) has no zeros or poles on the boundary
0D of D. The residue theorem implies that

S Reso(f) = —— [ d= f(2). (2.239)

weC/A 2wt Jop

Since f is periodic in wy and in we, f(z +w) = f(2), the integrals along the opposite sides of the cell

cancel, so the integral around the boundary 0D vanishes,

N

> Resy(f) =0. (2.240)

weC/A

Also f'(z) is periodic, and since Res,, (?) = ord,(f), we have that

> Resy <f/> = > ordy(f) =0, (2.241)

weC/A f weC/A

i.e. the number of zeros equals the number of poles.

The order of an elliptic function is its number of poles (or zeros), weighted by multiplicity, in
the cell D. A non-constant elliptic function must have at least two poles or a double pole, because
if it had a single simple pole, eq. (2.240) implies that its residue vanishes, thus the function f is

holomorphic, and hence constant. So a non-constant elliptic function has order > 2.

We introduce the Weierstrass g function on A,

pz)=5+ Y <(12 - %) : (2.242)



and the Eisenstein series of weight 2k on A,

G = Y. w. (2.243)

weN, w#0
Theorem 1: (the proof is given in Silverman’s book [59])

o (55 is absolutely convergent V £ > 1.

e ©(z) is absolutely and uniformly convergent on every compact subset of C\ A. The series defines
a meromorphic function on C with a double pole with null residue at each lattice point, and no

other poles.

e ©(z) is an even elliptic function.

The derivative of the Weierstrass o function is

P2)=-2 ) (z_lw)?, (2.244)

wEA

¢'(z) is also an elliptic function, ¢'(z + w) = ¢'(2).
Theorem 2: (proof in Silverman’s book [59]).
For a lattice A C C,
C(A) = C(p(2), ¢'(2)), (2.245)
i.e. every elliptic function is a rational combination of p(z) and ¢'(2).
Theorem 3: (see app. H.62)

The Laurent series for p(z) around z = 0 is

1 o
[ p(z) = ? + Z (2]{3 + 1) GQk-_l’_Q ng.
k=1
o VzeC\A, @ (2)2 =4 p(2)> — 60 G4 p(z) — 140 Gg.

We set go = 60 Gy, g3 = 140 G, then

O (2)? =4 p(2)> — g2 p(z) — g3 (2.246)

Differentiating the equation above, we obtain

2 ¢"(2) ¢'(2) =12 ¢'(2) p(2)* — g2 ¢/ (2). (2.247)
0'(2) = 6 p(2)? — % . (2.248)
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Further differentiating,

§(z) = 12 9(2) pl2), (2.249)
9(2) = 12 (¢(2) plz) + 9(2)?)

= 12 ({602 = 2) o) + 4 0(=)" — g2 9(2) — 9s)

= 12 (1096~ 5 92 0(2) ) | (2.250)

and so on, i.e. all the derivatives of the p-function are polynomials in the p-function and its derivative

¢, in agreement with the fact that every elliptic function is a rational combination of p(z) and ©'(z).

Next, we show that the polynomial in p(z),
¢'(2)" =4 9(2)" = g2 9(2) — g, (2.251)
has distinct roots, and so a discriminant (see Appendix G),
A=gs—27g*#0. (2.252)

A is periodic. Invariance under translations implies that for 2w € A, ©'(z) has the same value at w
and —w. Further, since {w;,wy} are a basis for A, we can take w3 = (w; + we), and since @'(2) is

odd, we have
/wi _ _& _ /ﬁ .
o(5)=-¢(-5)=-9(5), =123 (2.253)

So p’(%) =0, and we can write

IGORCIICORIICIIE (2.254)

with o(5) + o(5) + 0(5) = 0.

Likewise, an elliptic curve,
Y =4 1" — gy x— g3, (2.255)

has distinct roots, so for a; # as # ag it can be written as
y? =4 (v —a)(r — as)(x — a3), (2.256)

with a; +ag +as = 0.
The periods wy,ws of the elliptic curve (2.256) take the form,

a d _
wlzx/ag—a1/2yx:2[(( G271y (2.257)

a3z — a1

a d _
wo = /a3 —al/ T8 9 k(202 (2.258)
az Y

as — aq
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where K () is the complete elliptic integral of the first kind (see app. F).

As we said, w; and wy are R-linearly independent, so when the roots ay, as, az are real, w; can be

chosen to be real, then w, must be complex, i.e. it must have an imaginary part.

2.9.1 Elliptic polylogarithms

After partial fractioning the integrand of an integral with elliptic curves in the denominator, we only

need to consider integrals of the form,

dz dx
— z*, L/“““‘?” (2.259)
y y (z—c)

where k& € Z and c is a constant.
Integrating by parts, the integrals above can be reduced to a linear combination of

dr @ dr. ]/ahj, (2.260)
y y y (z—c)

which play the same role as the master integrals.

The elliptic polylogarithms (eMPL) may be defined in terms of the coordinates (z, y) of the elliptic

curve,

B

(&1

%%@:/dw%@@Efw”‘Wm@, (2.261)
Ck 0 Co ... Ci

with n; € Z, ¢; € (ﬁ, a = (a1, a9,a3) is the vector of the singularities of the elliptic curve and

Es(;x,d) = 1. We assume here that the elliptic curve is a cubic polynomial.

Since we want elliptic polylogarithms to have at most logarithmic singularities, each ¢,, can have

at most simple poles. In particular, for n = 0,

Vas — a1 _ Vas — a1 ' 2.262
2y 2 /(z —a1)(z — az)(z — a3) ( |

Po() =

d
w = Q—x is the differential of the elliptic curve, it is holomorphic and non-vanishing (see App. G),
Y

thus ¢ is free of poles, and / dx ¢q is related to the incomplete elliptic integral of the first kind.

¢+1(c, x) have a simple pole at = = ¢,

bler)=——,  b(ca)=—

r—c y (z—c)

: (2.263)

with y. = (¢ — a1)(c — az)(c — a3).

¢_1 can be reduced to simpler integrals using the IBP, ¢ is the integration kernel of MPLs, so
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MPLs are a subset of eMPLs,

B

nk;x) =G(c1, ... ;). (2.264)
(&1

Ck

The details of how the ¢,, for |n| > 2 are chosen and constructed can be found in ref. [60].

2.9.2 Isogenies

Since elliptic curves are characterised also by a zero point, given two elliptic curves F and E’, an

isogeny is a map that preserves the zero point,
¢p: E—FE st ¢0)=0. (2.265)

If P = (z,y) is a point on E: y?> = 2® + A x + B, an isogeny that elliptic curves have is the
multiplication by n: P — nP. Then the z- and y- coordinates of nP are rational functions of the z-

and y-coordinates of P.

Consider two elliptic curves E and E' with lattices A and A". The elliptic curves have complex

multiplication if there is an isogeny,
¢:C/A—C/N / ¢(z) =czmod A, (2.266)

for a complex number ¢ € C. Hence ¢ A C A'. If ¢ A = A', then E and E' are isomorphic. Two

isomorphic curves have the same j-invariant (see App. G), j = 5.

E.g. for the equal-mass sunrise integral, we have found an elliptic integral with elliptic curve,
y? = (1 —2*)(1 - k* 2%). (2.267)

We could have also looked at the maximal cut. This would yield an elliptic integral with an elliptic
curve given by another quartic polynomial. The two elliptic curves would be isogenic, but not

isomorphic.

If £ and E are isomorphic, ¢ A = A’, and all the lattices with periods w; and w, are equivalent

w ’ . .

to a lattice with periods 1 and 7 = “2 A and A are called homothetic, 7 is called fundamental
w1

lattice period or modular parameter.

2.9.3 Iterated integrals on a torus

The similarity between the elliptic curve E (2.255),

y2:4x3—ggx—g3:4(m—al)(x—ag)(a:—ag), (2.268)
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over C, and the elliptic function (2.251),

02 =40~ g p—gs=4(p—a)(p—as)(p—az), (2.269)

on the torus C/A, is not a coincidence.

The uniformization theorem says that every elliptic curve over C is parametrised by elliptic func-
tions, precisely that if A and B are complex number such that A = A% —27 B2 #£ 0, there is a unique
lattice A C C, such that ga(A) = A and g3(A) = B. The proof uses the theory of modular functions,

i.e. functions whose domain is the set of lattices in C (which we will only mention briefly).

A consequence of the uniformization theorem is that there is a complex analytic isomorphism,

F: E(C)— C/A | F(P)= /Opd; mod A, (2.270)

dgp(2)

¢'(2)
E is associated a point z = [p(2), ¢’(2), 1] on the torus C/A,

d
in particular the differential ®on E “pulls back” to =dz on C/A, and to a point [z, y, 1] on
Y

[z, y,1] = [p(2), ¢ (2),1]. (2.271)

If y = 0, then 2 = a;. Correspondingly, on the torus C/A, we have ¢ (z) = 0, when z = %, ie. on
the half-periods, so
Wi
(4;,0,1] — [p <§) ,0,1} . (2.272)

If y # 0, then F(2) = p(z) — z is an elliptic function, with a double pole at z =0 on C/A. Since an
elliptic function has equal numbers of zeros and poles, then F(z) has two zeros or a double zero on

C/A, thus p(z) = x has two solutions, which differ by a sign since p(z) is even.

Since every elliptic function is a rational combination of p(z) and ¢'(2), if R(x,y) is a rational
function of two variables, R(z,y) on E is mapped to R((p(z),¢'(z))) on C/A and vice-versa, so the

field of elliptic function on the torus is isomorphic to the field of rational functions on elliptic curves.

An abelian differential on E is a differential form of type dz R(x,y). There are three types of
abelian differentials: those of the first kind are holomorphic on E; those of the second kind are mero-
morphic, but the residue at every point must vanish; those of the third kind are meromorphic, with
non-vanishing residues. Now, we examine how abelian differentials on E are mapped to differential
forms on the torus C/A.

d
We already know that w = 27113 is holomorphic and non-vanishing on E, so it is of the first kind,

Y
d
and it is mapped to the holomorphic differential ?((Z)) = dz on C/A.
o' (2
d
T has a double pole without residue at infinity, so it is of the second kind, and on C/A it

d
corresponds to p(z) dz = —i + O(zo).
z
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dx

y (z—c)
In general, an abelian differential on E is mapped to the differential form f(z) dz on C/A, with

has a simple pole at z = ¢, with residue y =/ f(x.), so it is of the third kind.

f(2) an elliptic function. However, f(z) has at least two poles, so an abelian differential cannot have
a simple pole. This is related to the fact that the primitive F of an elliptic function F(z) = ’ dt f(t)
is not periodic, because the lower integration limit 2z, breaks the invariance under translaz’gions by
periods. So

F@+w):/“wﬁf@yngy+c, (2.273)

20

where C' is a constant (with respect to z) that may depend on w,

oszﬁﬂo;[mf@. (2.274)

F(2) is called quasi-periodic. An example of quasi-periodic function is the Weierstrass ¢ function,
) = - [Ca () - )
1 z 1 1

B dtweAZwﬂ((t w)? B E)

_ i+w€%¢o(2iw+:}+;). (2.275)
Note that 2c(2) . . .

=g WGAZWO (m - E> = —p(2), (2.276)

so the Weierstrass ¢ function is a primitive, up to a sign, of the p-function. The ( function is not
invariant under the translations, ((z + w;) = ((z) + 2 C(%% but it has a simple pole at z = 0, so it
can be used to construct differential forms with simple poles on C/A.

This allows us to introduce another definition of elliptic polylogarithms, which are called iterated

integrals of modular forms,

nk; t, 7') . (2.277)

~ /M1 ... N z ~ (T
F< ! k;z,7’> :/ dt g (t — 2y;7) F( 2
zZ1 ... Rk 0 2k

22
Firstly, let us describe the parameter 7. As we said, lattices with periods w; and w, are isomorphic to
a lattice with periods 1 and 7 = wy/wy, with 7 the fundamental lattice period or modular parameter,
wy and wy are R-linearly independent, and we may choose w; € R, and w, with a positive imaginary
part. Thus Im(7) > 0. So, introducing the upper half plane, H = {r € C; Im(r) > 0}, the

isomorphism class of lattices is labelled by

A ={ny+net [ ny,ne € Z, T € H}. (2.278)
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On the upper half plane H acts the special linear group SL(2, R), by Mdbius transformations,

a b az+b

with det(g) = 1.
H is mapped to H because

Im(z)

Im(v(z)) = cotdl

(please check) . (2.280)
v and —y act in the same way on H, so we take PSL(2,R) = SL(2,R)/Z,, with Z, = {1,—1}.
Different values of 7 may correspond to the same elliptic curve. They do if and only if they are
related by a PSL(2,7Z) modular transformation, since I'y = SL(2, Z) is called modular group. It is
called so because the points of I'; /H are moduli, i.e. parameters, for the isomorphism class of lattices.

So I';/H is a moduli space.

A meromorphic function f : I'y/H — C, invariant under I'y, f(yz) = f(z), is called a modular
function. The function must be meromorphic because there are no holomorphic functions on C/A.
For this reason, one introduces modular forms, which are holomorphic functions on H, such that the

modular function is the quotient of two modular forms. A modular form of weight k transforms as

<az+b

p— d) =(cz+ad)* f(z), Vnyerl;. (2.281)

An example of modular forms is the Eisenstein series Ggy of weight 2k, for k > 1 (for k =1, it is a

quasi-modular form).

In the definition of the eMPLs through the I' functions (2.277), the integration kernels g™ (¢ —

z1; 7) are modular forms...
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Appendix A

n-gluon scattering

Let us consider the scattering of 2 — (n — 2) gluons,

g(=p1) + g(=pn) = g(p2) + ...+ 9(Pu-1) .

We parametrise the momenta in light-cone coordinates,

p1=(p;,0;0,0)
pi = (Ipir|€”, [piLle™; piz, Diy),

Di, = Pix + 1Diy,

Momentum conservation is

DPn ::(Oap;;0a0>7

y; is the rapidity of the i*" gluon.

n—1 n—1 n—1
i =>. 05 —pn=>p; 0= pi .
1=2 =2 1=2

From eq. (1.25), for p;” # 0, the Weyl spinors are

VP

yZan

n
§r(pi) = ! (pi > ) - (pi) = !

From eq. (1.24), for p™ = 0, we use
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After analytic continuation, the negative-energy gluons have spinors!

(v -pf {0
§+(p1) =1 ( Op > ) f—(pl) =1 <\/—Tﬁ> )

The spinor products are

.. 1 p—‘i_ p* ..
<Zj> :g—(pz)f-ﬁ-(p]) —PiL }?i__’_ij ]T:_ 1,] :2,...,’[1—1, (A7)
_pJF
k
(kn) = ﬂ(m)&(pn) =iv-—ppi  k=2....n-1, (A.9)
(1n) = € (p1) = —V(=p)(=p2) (A.10)

Note that the spinor products with negative-energy gluons acquire as expected a sign factor when

complex conjugated, [pk] = sign(p°k®) (kp)*.

o
(k1] = €L (pe)é(p1) ZPM/ 5 = —(1k)" (A.11)

+
k

In fact,

=
=
Il
s
4=
=
3
1
>
—_
2

n

[n1] = 51<pn>5_<p1> = —V(—m(—pg) = —ﬁ = (1n)". (A.13)

A.1 Multi-Regge Kinematics
The multi-Regge kinematics (MRK) is defined by a strong ordering in rapidity of the outgoing gluons,
Yo >> Y3 >> ... >> Yp_q, (A.14)
with comparable transverse momenta
prol = ...~ ‘PL(nq)‘ : (A.15)
In light-cone coordinates, that is equivalent to the strong ordering,

py >> ... >>ph py << ... .<< D, . (A.16)

!The analytic continuation to negative energy of the incoming gluons is done after any possible complex conjugation,

soe.g. &L (p1) = i(y/—pf,0).
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The leading contribution to momentum conservation becomes
—P1 =D2, —Pn =Py (A.17)

Likewise, the leading contribution to the spinor product is

[p
(ij) ~ pj1 i;, for p >>p/. (A.18)
J

The spinor product (1k), (kn), (In) are formally the same, however in computing them one retains

the leading contribution to the momentum conservation, e.g.

(kn) =i/ —pppl ~iypppy k=2,...,n—1,
(In) = =/ (=pi)(=pp) = —Vs = \/papn_1 - (A.19)
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Appendix B

Basics of projective space

Let us consider a polynomial function of two variables, f(z, z), which is homogeneous of degree d,
fAx, A2) = M f(x,2). (B.1)

Note that any function of one variable g(x) of total degree d can be made homogeneous by adding

one variable,

gz, 2) = 2* g(g) : (B.2)
e.g. N N
glx) =2+ — g(x,2) = z?’((;)g + ;) =2° + 127, (B.3)

Of course, for a homogeneous polynomial f(z,z), if xy is a root also Azg is a root. Thus, we

would like to divide out by all solutions related by simple rescaling.

We say that (21, ...,2,41) and (71, ..., T, ) are equivalent if there is a A € K, such that z; = Az,

for i =1,...,n 4 1. The equivalence class is [z : ... : x,.1]. The projective space is
P"(K) = {[z1:...: 7,11] € K"/ not all z; = 0}. (B.4)
Then the solutions of a homogeneous polynomial f(z1, ..., x,.1) belong to the projective space P"(K),
Si=A{lx1:... xpy1) € PYK)/ fla1,...,x011) =0} (B.5)

If 2,41 = 0, we get the point at infinity.
In sec. 1.15, K= C and n = 1, and P*(C) is CP".
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Appendix C

Pfaffian

Consider a 2n x 2n antisymmetric matrix W, and the set S of partitions of {1,2,...,2n} into pairs.

The elements a € S can be written as

a:{(il,j1>,(i2,j2),...,(’in,jn)}, Zk<]k7 1<ty < ...<1,.
2n)!
There are (2n) partitions.
2" n!
Then we consider the corresponding permutations,
1 2 3 4 ... 2n—1 2n
Oa = §. . . . . )

1 2 J2 - in In

and the product,
Yo = Sgn(aa) Qirj1 Qiggy " * Qi -

Then
PHT) = > ta.

a€esS
Note that
Pf(¥)? = det (V).

E.g. suppose that n = 2,
0 a2  a13 Q14
—aiz 0 a3 (g4
—Q13 —as23 0 34

—a14 —ag4 —az 0

4!
There are 10— 3 partitions, given by

pairs

(1,2)(3,4)

(1,3)(2,4)

signatures

+
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The Pfaffian is given by

P{(V) = a1 ags — a13 aga + a14 ao3.
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Appendix D
One-loop colour decomposition

Since we are going to analyse one-loop n-gluon amplitudes in some detail, let us display their colour

decomposition.

One-loop n-gluon amplitudes may feature a gluon loop or quark loop with n; flavours of quarks.

Their trace-based colour decomposition is

MOV,...n) = ¢"[Ne Y te(Ton T ) Al (00 - 0,)
O'ESn/Zn
[n/2]+1
+ Z Z tr<T%1 VARG )tr(Taac T T%n)An;c(Ul T Un)

c=2 UESn/Sn;c

toy S (T 1) AV (o)) (D.1)

U'nesn/zn

where S, is the subset of S, that leaves the double trace invariant, and [z] is the greatest integer
less than or equal to x. The superscript [j] with 7 = 1,1/2 denotes the spin circulating in the loop.
AL}}l and Ag;/f] are coloured-ordered. AE}l yields the leading contribution in the large- V. limit. The

sub-leading amplitudes A,,.. can be written in terms of linear combinations of Ag}l [43].

The multiperipheral colour decomposition is [18]

M7(L1)(17_..,n) = g"[NC Z tl"(Fa"l "'Faon)ALl;]l(Ul“‘Un)
0€SR/ZnRR

vy S0 te(T0 - T AN oy o) (D.2)

O'nGSn/Zn

where R is the reflection, R(1,...,n) = (n,...,1), thus the independent sub-amplitudes Ag}l are
(n—1)!
5
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Appendix E
Integration-by-part identities

Let us suppose that every Feynman integral with momenta in the numerator has been reduced to

scalar integrals, by expressing e.g. every scalar product by a difference of propagators, e.g. for p*> = 0

/dd€ 52(“? - /dd€ P(l L s —a. (E.1)

{+p)? (+p)? 2

The integration-by-part (IBP) identities, i.e. the reduction of scalar integrals to a linearly independent

set of scalar integrals, stem from using the divergence theorem on the integrals. For example, let us

2
take the massive tadpole / dde ok with D = 2 — m?. Then the divergence theorem states that

g - -
d ° [
/Md ‘ o D Jom ds D 0, (E2)

where M is the space of integration, and OM its boundary (usually the (D — 1)-sphere). But

d — d 4
0= /Maeu 2 —m? /M —7712_2(6“’—7712)2>
— /ddg (5 —2 D;m) = (d—2) I(1) — 2m*I(2), (E.3)

where I(n / ddﬁ— so we get the IBP,
(d—2) I(1) —2m? I(2) =0, (E.4)

and we can express [(2) as a function of I(1), i.e. in the case of the massive tadpole, we have only

one master integral.
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Appendix F

Complete elliptic integrals

Considering an elliptic curve in Jacobi form,
g2 = (1—2?)(1 - Ka?), (F.1)

the complete elliptic integral of the first kind is

K= [ 2 = / e
0oy 0 /(1 —22)(1 — k2a?)
w/2 db
_ S F2
0 1 — k2sin® 0 (-2)

the complete elliptic integral of the second kind is

k2 N =
/dx _/ 1—£C2 N /de 1— a2
w/2
- / do /1 — k2sin4, (F.3)
0

and is related, as we saw in (2.227), to the perimeter I of an ellipse with radii a and b, and b > a,

a?
I:%E(l—ﬁ)

The incomplete elliptic integrals are obtained from the complete ones by leaving the upper limit of

integration undetermined, i.e. by replacing 1 by x, or w/2 by 6.
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Appendix G

Weierstrass form of an elliptic curve

As discussed in the App. B, a projective curve in the projective plane P" is the set of solutions,
C={[X1:...: Xp] €P"/ F(X1,...,Xs41) =0}. (G.1)

of a homogeneous polynomial F(X7,..., X,.1).

We introduce the non-homogeneous polynomial,
flzy, ... x,) = F(Xq,..., X, 1) (G.2)

The curve f(z1,...,x,) = 0 is the affine part of the projective curve C. The point [X; : ... : X, 1]
with X, 11 = 0 describes the point at infinity. It can be shown that C' can be written as the union of

its affine curve and its point at infinity.

An elliptic curve in Weierstrass form is a curve in P? with an equation of the form,
Y2Z4+a XYZ+a3YZ? =X+ ay X?Z +ay, XZ% + ag Z°, (G.3)
with a base point 0 = [0, 1,0]. Its affine curve is
E: ¥ 4+aiay+asy=a>+ay2’ +asx + ag, (G.4)

with the extra point 0 = [0, 1,0] at infinity, is called the long Weierstrass form. We can simplify it
through the substitution,

1
y—>§(y—a1x—a3). (G.5)
Then we get (please check)
E: y* =423 4+ bya® +2byx + b, (G.6)

with b2 :CL%+4@2, b4:2a4+a1a3, b6 :a§+4a6.
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T — 3 by Y
36 108

Substituting further (z,y) — ( ), we obtain the equation,

y* =23 —27cyx — Sdcg, (G.7)

with Cy = bg — 24 b4, Cg — —b% + 36 b2 b4 — 216 b6.

If an elliptic curve has the form,
Vv =134+Ar+ B, (G.8)

it is in the short Weierstrass form.

Here are some examples of elliptic curves, which have distinct roots.

/\\/ ?2:x1-3u1-3 / ‘]1= i-x
A=-2I¢o S A=l
v= P rx
A=~¢4

Figure G.1: Examples of elliptic curves with distinct roots: On the left panels with one real root; on
the right panel with three real roots.

For a polynomial equation, f(Xi,...,X,) = 0, asingular point P = (X?,..., X?) is characterised
by

ofp) - _9f(P) _
==y =0 (G.9)

For f(z,y) =y*— f(z) =0, with f(z) =2+ Az + B,

gf =2y=0 = f(x)=0

8?1’ (G.10)
. :f/(xo):O

0| p

so f(x) and f (z) have the common singularity z, i.e. xo is a double singularity of f. Examples of

singular cubic curves with a double singularity;,
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e x(t () % (x-1)
Q;\ yé:o i /]J{ < V/;o |

vsof,fod S:.u.(ﬂ ‘bo«l.r\ W"“l

Figure G.2: Examples of singular cubic curves with double singularities.

yhe ot
4 =0

Figure G.3: Example of singular cubic curve with triple singularity.

We introduce the quantities:

For y> =23 + A z + B,

A=-16(4A*+27B?%), j=-1728 (42)3 : (G.11)
More in general, for y? = 423 + byx? 4+ 2 |by x + b, as in eq. (G.6), fixing 4bg = babg — b3,
A = —bsbg — 8 b — 27 bz + 9 bobybs, j = W : (G.12)
So for y?> =4 23 — gy x — g3,
A=gd—271¢2  j= 172A8 g (G.13)

A is the discriminant of the Weierstrass equation. When A = 0, the curve is singular,

A #0, the curve has a node
If A=0 and (G.14)

A =0, the curve has a cusp.

The only change of variables that preserves the short form of the equation is
r=u’z, y=u>vy, (G.15)

with u* A" = A and «® B' = B, which implies that u? A" = A and j' = j, so j is the j-invariant

of the elliptic curve, i.e. it is the invariant of the isomorphism class of the curve. We introduce the

168



differential of an elliptic curve E (i.e. with no singular points),

_ d(z — x) _ _d(?/ — o)
ayf($, y) axf(xv y) ’

w

for a point P = (x0, o) - (G.16)

w is holomorphic and non-vanishing, i.e. it has no zeros and no poles (a pole of w would imply
O.f(x,y) = 0y f(x,y) = 0, which would mean that E is singular at P).

For f(z,y) =vy*— f(z) =0, with f(z) =2* + A = + B,

_d(z — x0)
W= T (G.17)
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Appendix H

Exercises

H.1 Charge conjugation

The charge conjugation maps a fermion of a given spin into the antifermion of the same spin. The

charge conjugation matrix C' is defined by
CyC7 ==, with c=Cc'lt=0c"=C"T, (H.1)

and its action on the Dirac spinor is Cut = uZ.

1. Show that C' = £i7, and choose C' = —ivy, for further computation.

Solution. We have
’YOT :707 ’Yﬁ = _’Via 1=1,2,3, (HQ)

thus
Yr=Al, A=, =40 (H.3)

Cv;, = —7,C implies that C' = €%, and then

C=C"'=C"=0"=¢%=4i. (H.4)
2. What do C’W;C'*l = —, and Cuy = uZ imply in the 2-dimensional spinors and matrices ?
Solution.
Cuy = —ipuy = u*  gives —iopé, =&F. (H.5)
CyiC™1 = —7, is explicitly
—i727,(—172) = =V = V2V V2 = Vu s (H.6)
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which yields the relation

*

0-20-/1

02 = 0y -

Transposing it yields
~ T
020,02 = UH 5

i T = r_ _
since o), = 0, and 03 = —0s.

H.2 Little group

Show that the little group of a 4-vector p* with p? = 0 is 1SO(2), the group of rotations and

translations in 2 dimensions.

Solution.  We have a reference vector p* = wy(1,0,0,1) with wy > 0 and we want to determine

Gy = {A : Ap = p}. Using the infinitesimal Lorentz transformation,
AP, =", + Wy,
we get the linear system
wh,p” =0, wh = —w"
of which the solution gives
W5 =wd =0 wly = —w!y w?y = —w?s.
This reduces the number of independent w” from six to three so that

1
§WWMW = w' M5 +w” (Mo + Ms;y) +w? (Mo + M),

J3 F1 Es

where the M, are the usual generators of the Lorentz group. The commutators are
[J3, E7] = iFs, [, Bb] = —iE}, [Ey, Eo] =0,
and the unitary operator corresponding to finite group elements of G is

S(al, CLQ)R(G) = e*i(a1E1+a2E2)67i@Jg )
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The key is to notice that

, . © © —sin®
G_ZGJS (a1E1 + a2E2)€7“9J3 = a,leEl + CLQGEQ; (ag) - (COS o ) <a1> ) (H15)

as sin® cos©
which is
R(©)S(ay,a2)R71(0) = S(a?,af) & R(©)S(a1,a5) = S(af,ad)R(O). (H.16)
Now we can look at

S(ay, ab) R(©')S(ar, az) R(©) = S(a},a5)S(at’, a5 ) R(O')R(O) (H.17)
= S(d) +at, ay + a5 )R(O' + O), (H.18)

which of course is nothing else than the group multiplication rule,
(@, d,,d))(©,a1,a5) = (0 +O,d}, +a¥,dy +a), (H.19)

which we recognize as the group of rotations and translations in a two-dimensional space 1S50(2)
and we have G ~ 150(2).

For further reading, see [16], chapter 2.

H.3 Spinor identities
1. Using the explicit form of (%), check that
Bt [p*) = Xa(p) (") Nalp) = 20", (H.20)

i.e. the Gordon identity and likewise

<P7’ " )p*> = A(p) (8%) 44 \*(p) = 29" (H.21)

Solution.  We have the identity,
1 _
A= 5 tr(c"A)a,, (H.22)
for all complex 2 x 2 matrices. In particular, we have

ot = x40 = (210 ,)qa (H.23)

1
but also from (H.22) z=3 tr(otx)a, . (H.24)
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Comparing the coefficients in front of & immediately shows these identities.

2. Use the identity (o) = —e® (5)], e to show that

A (p) (7"),5 A*(a) = Aala) (@) Aalp) | (H.25)
which is (p~|7v*|¢7) = (¢T| " |pT), i.e. charge conjugation.
Hint.  Use A = ¢®}; and A% = ¢ ),

Solution. We get

N(p) (0")a N (@) = € X0l0) ("), X (q)

= M (p) (=€) (7")3 €Ny (q)
o(@) (") X (p) - (H.26)
3. Prove the Fierz rearrangement
(k|7 [p7) (| |a) = 2¢kv) [ap] (H.27)

using charge conjugation (v |v*|¢~) = (¢7|+* |vT) and the Fierz identity for Pauli matrices
(Fu)aa(0")? = 2050

Solution.

kv |p7) (o am) = R ) (aF o)
= L (k)¢ (el (@)out (v)
= £ (k)aha &t ()€ (o Ep(v)
= 267 (k)&1a(0)E 4 ()62 (p)
= 2(kv)[qp] . (H.28)

4. Prove the same Fierz rearrangement in terms of A-spinors.

Solution. In complete analogy to exercise 3 above we have
(B2 [p7) (g [oh) = A (B)ahA (D) N (@) oA (v) (H.29)

and all other computational steps are the same.
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H.4 e et — u pu' scattering

Consider the amplitude for e“e™ — p~pt. We choose the momenta to be all outgoing, so that
4
momentum conservation is pr = 0. Accordingly, helicites are for all outgoing momenta. i.e. an

i=1
incoming left-handed electron is labelled as an outgoing right-handed positron, e.g. the amplitude,

er (—=pr)eq(—p2) — pp(ps)ig (pa) becomes My(1,2.,37 .4 ) as shown in fig. H.1.

eh:2" py 4
\\ Y /
ey 117 3F

Jp i

Figure H.1: e"et — pp* scattering for the configuration (17,27, 3:,,41}).

1. Compute My(17,,2., 3:_ , 4;+).

Solution. We have
2
M4(1:+7 2;* ) 3:* ) 4/;+) = 28612 <27‘ T ‘17> <3+' f}/“ ‘4+>
2
(use charge conj.) = i; <2_‘ Vi ‘1_> <4_‘ ol ‘3_>
2

(use Fierz) = z‘si2(24>[31] . (H.30)

2. Compute My (15,2 ,3" 4-.) using \ spinors.

et “e—> wr

Solution. We have
+ o— of 44— e a=p Yay . _bb
My(17, 2, 3#774#+) = 25712)\2%@)\1)\360“ Adp
. . 2 ~ . o~
(use 5'5(10'/1:1) = 2(5ab5db) = 2.86122)\(21)\(11/\3@/\4(1
o2
=71—2(24)[31] . (H.31)
812

3. Write My(17,27, 3:,,41}) in terms of right-handed spinor products.

Solution.  Note that using s = (12)[21], s13 = s94 and momentum conservation [21](13) =
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—[24](43), we can rewrite

(24)[31]  (24)[31](13)
512 (12)[21)(13)
(24)[42](24)
~ (12)[21](13)
_ (24)[42)(24)
o (12)[24](43)
(24)
= ———— H.32
(12)(34) ( )
4. Write My (15,27, 3;,,4;) in terms of left-handed spinor products.
Solution.  Here we use momentum conservation [42](21) = —[43](31) and s13 = so4 and get
(24)[31]  (24)[31][42]
S12 [12]<21>[42]
o [31]%(13)
o [12][43](31)
[13]?
= — . H.33
[12][34] ( )
5. Do the same for M,(17,,2_, . 4;}). How is that amplitude related to My (17,27, 3:, )
?
Solution.  In (H.30), we had
+ o= ot 4- e’ -\ /4 -
My(1), 2,31 47,) = i (2 W \1 ) (4 W \3 ).
Our amplitude for the My (15,2, ;_,4:+) reads
2
. € _ _ _ _
My(1,2, .3, ,45) =i— (27| 7, [17) 37|+ [47) (H.34)

512

As we can see, all the computation will be the same but we have to interchange 3 <+ 4. This

is charge conjugation on the muon line.

H.5 Crossing symmetry

Use crossing symmetry to obtain the amplitudes for eq — eq scattering from the amplitudes for
e~et — qq scattering, as shown in fig. 1.3, and compute the amplitude squared and summed over
the helicities.
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Hint. Use the colour-stripped A4 amplitudes for e”et — ¢g scattering,

24) [31 ,
M1 2 37 4y = i 2H B o

et “e—> q’ q

S12 S12

23) |41 ,

iMy(15,2,3,,4F) = Zw _ 51
S12 S12

Solution: Firstly, we remind that helicities are labelled for all outgoing momenta, e.g. the
amplitude, My(17,2,_,3},47), in the physical region becomes the amplitude for ey (—p1)ef(—p2) —
qr(p3)qr(ps). To get the helicity amplitude of eq — eq scattering from the amplitudes of e”e™ —
wpt, or e"et — ¢q, one may use the crossing symmetry of the initial and final momenta, as
shown in Fig. 1.3. We rewrite the Mandelstam invariants for the crossed diagram, following the

Correspondence,

(k1+k2)2:8 — (6—5/)2:t,
= k)=t — ((—p))?=u, (H.35)
(]{31—]{34)2:U — (ﬁ‘i‘p)?:S,

Thus, we can obtain the helicity amplitudes of eq — eq by crossing the kinematic invariants of

e"et — qq,

{eRef — URplT, qRQL} ) {€RQR — €RQR} )
A R i T s
€rLer —7 M MR, qL4R erqdr — erqrL

€Rer — MpMRsqLIR €rqrL — €RqrL
{Ri wi _}Ntz . { " }N (130
€L€r = MRML>4RAL €rqdr = €LqR
so the squared amplitude for eq — eq scattering becomes
2 2
+
SMP =get@? T (H.37)

hel t

The s* term comes from the scattering of L(R)-handed electrons on L(R)-handed quarks, and the u?
term from the scattering of L(R)-handed electrons on R(L)-handed quarks.

H.6 Polarization vectors

The polarization vector of a photon or a gluon of momentum k and reference vector ¢ is

; AT KT
. (k.q) = im. (H.38)
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Show that it fulfils the usual properties of polarization vectors:

1. Show e,;*(k,q) = €} (k, q).

Solution. We have:

=, (k,q). (H.39)

2. Show (k- e*(k,q)) = 0.

Solution. We have:

(ke (k,q) = (k-€™(k.q))

(al vulK]

V2{qk)

(qh) kK]

V2(qk)

—0. (H.40)

(use: p = |p) [p|+|p] (pl) =

et works in complete analogy.

3. Show €"(k,q) - €"*(k,q) = —0™'. Why does that imply €"(k,q) - €"(k,q) =0 ?

Solution. We have:

=_1. (H.41)

177



and

since the current is nilpotent.

. Show that the usual polarization sum is fulfilled: 3, ek(p, k) - €/*(p, k) = —g 4 2£

Solution. We have
Aa(p)oder, (k)
& (p. k) = . ,
#.%) V2(kp)
\; (K)o
6;*(])’ ]{5) _ _ b( )0-/4 b<p)

and our polarization sum may be written as
—+ 4% — _—* __ _—% _+x* —%x 4k \*
ey Fee, =)+ (e,7e))

nv
=2Re(e, "))

+

% contains the two spinors,

However, we see that €, "¢

From that it follows
&, (p, k)™ (p, k) o< (p0)0aoi® (k) 00
= p°k? t1(0,540,55) .
where

tr(0,000v04) = 2 (9padvs + Jusva — GuvJap = €uavs) -

So

e, (p, k)l (p, k) o< 2 (p“k;” + ktp¥” — g" (kp) — ieuaygpak[g) )

(H.42)

v +pu kM
(pk)

(H.43)

(H.44)

(H.45)

(H.46)

(H.47)

(H.48)

The e-tensor drops out due to (H.44), and we see from the prefactor, that we will reproduce

the known polarization sum.
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H.7 Polarization vectors in 2x2 matrix notation

Compute € *(p,k)aa = (6 7*(p, k) - 7)aa-

Solution. We have:

<k+ ’ Tu ’p+>
V2 (k+[p)
(k|7 Ip)
V2[kp]
Aa(k)gfi”a(p)

A (H.49)

6;*(197 k) ==

This means
s S‘d(k>ada)‘a<p) _
€ (D k) = —W(U“)bb

(use: (6u)ad(a“)bb = 25ab5di’) = _\/EW : (H.50)

Furthermore:

Z—*( 7]{:) — <k’_|’}/u |p_>
V2 (k= [p*)

(p* . [kF)

V2(kp)

€

(H.51)

which means

e ) = /ERPIE) (H.52)

H.8 Polarization vector identities

Show that with the representation (H.38) of the polarisation vector, the following identities hold:

q-c(k,q)=0. (H.53)

Solution. We have:

179



Solution.

3. (v-€™(p, k) =

Solution.

q-€(k,q)=q € (k,q)
_ {alwlH
V2(qk)

- _ {99)(gk]
(use: ¢ =la}lal+lal al) =5

=0.

e (pi, k) - e (pj k) =0,
€™ (pi,p;) - € " (pj, k) =0,
€+*<pi7k) ( J ) 0.

We have:
€ (pio k) - € (g, k) o ([ o) (7[5 [
=</f/f>[pgp]
=0
6+*(pi,pj)- O<<p "V,u ‘p kJr’fyu ‘p;r>
= (o5 | v |pr) o5 |7 )
= (p;p;) [kpi]
=0,
e (pik) - € (pismi) o (| [pi) (0|2 o)
o (k™ | |pi) (o5 | 7" [pi)
= (kp;][pipi]
=0.
V2 N/t
2 |+ b
We have
o _ K wlp™)
e, (s k) \/5<k_|p+>7
I SV 0 (o")"
= \/5<kp>/\ (k) ()aaA" (p) <(5“)bi) 0
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For the upper block we use the Fierz identity (&,,)qq(c* )i’b = 26,%6," and get

\/§ NG b _ —
T ¥ AR = 2 ) (k]

For the lower block we use:

= 2€4p€,j,
YIS V2
= Ty o0 = )
which then yields
(v-e"* (k) = <\/§> (fp )k~ + [65)))
We can furthermore look at
e - )
R = )
k)
V2[kp]
. ﬂl[kp] X (9)(0,)aa N (k)

which then gives with the analogous computation

—* o \/§ - - + +
€, (p, k)y :—@ (‘k‘ ><p )+‘p ><k: D .

¢ (i) [pF) = 0F | ¢ (pinpy) = 0.

Solution. Use eq. (H.64), noticing that (kk) = [kk] = 0.

H.9 Charge conjugation of currents

Show that

(k=] vn

) =—{(¢"

Hint. Use & = —io%¢, and 0?5402 = o#T.

YoV k:F> )
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Solution. We have:

q%) = A(k)(0)aa(0,) " No(4)
= (k) (o) aceae) () ai€”e™) Mo(a)

<k7’ Vv

= () (00)ai | =P | (—ead?()) (Mo(a)e™)

—5d

Yoyu |KT) (H.69)

S

In particular notice that for any even number of gamma matrices (—eA*(k)) ()\b(q)ebd) will always

appear and we will have

K=y ™) = = (¢*

Yoo |KF) (H.70)
Similar considerations show for an odd number of gamma matrices

(K| |a®) = (¢F

Yoo Vu ‘k¢> . (H.71)

H.10 e e¢f — vy

Consider the process ey ef; — vy with the amplitude My(1},27,3,,4,) and a sample diagram shown

below. The other relevant diagram is obtained by crossing of the photon legs.

e o1 3

-

t—:}%:? 4

If we only fix the electron and positron helicities, there are still four helicity configurations for
the photons: 3741, 3747, 374~ and 374". Which of them are related by parity transformations and

swapping of labels? Compute the independent ones.
Hint.  For 374", use py as a reference vector. For 3747, use €7(3,2) and e (4,1).

Solution. The 374" and 374~ configurations are related by parity, while 374~ and 3741 by

swapping of the labels. Therefore we have to compute 3741 and 374~ only.

For the sake of brevity, in the following we denote €* as .
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We have

. _ . _ i(ph + 1) i(ph + 1) _
M2 30 = (i 2| () T ) + g T g ) ) (ar2)
For the 374" configuration we see that by choosing the reference momentum for both polarization

as po, we will have (27| ¢(k, p2) = 0. So the complete amplitude contribution vanishes.

For the 374~ configuration we see that by choosing the polarization vectors €*(3,2) and e (4, 1),

we can achieve the second term to vanish again, since (27| ¢(3,2) = 0. The amplitude then reads:

iMi(1F,2;,3,,4,) = (—ie)® (2] (((4, 1)W¢+(3,2)> 1)
—2'62 _ \/i + + _ _ _ _ \/§ + + _
=22 o] (= ) (e o) (g ) o)

_ 21,[14]2<23> (24)[14](42)[31]
o2 (24)°
= —2ie 323 (H.73)

H.11 ¢jef; = qrgrq; Scattering

Figure H.2: e~ (—p1)e™(—p2) — q(p3)g(p4)d(ps)

In the following we want to consider the scattering amplitude for the process e™(—pi)et(—p2) —
q(p3)g(p4)d(ps) with the contributing diagrams shown in fig. H.2. We may write the amplitude as

Ms(e"e™ — qgq) = (\/56)2QQQ6(TZ)Z§A5 (e_e+ — qgcj) ) (H.74)

where As denotes the color-stripped amplitude. In the following use the normalization of the
fundamental representation of SU(3) such that Tr(7°T") = Tré® with Tr = 1, which results in the

. g
uark-gluon-vertex i—=1T"~".
q g \/5 v

1. Compute the color-stripped amplitude A5(17,27, 37,45,57)
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Hint Choose the reference vector of the polarization ¢ = p5. The product
N 0 o5’ a?
P’ = <a s ) (H.75)
oc%

can be used to rewrite the current in 2-dimensional notation.

Solution. We denote the outgoing gluon polarization €* by e and have

iAs(15,20.,37,47,57)

i ey [E G R ) 5"
2\/5512

] e (p4>CI)-

(H.76)

S34 S45

We can now use

etk = 2 (| + ) 1)

and see that choosing our reference vector as ¢ = ps; will make the second term vanish. We

therefore have

[34] (57| (p, +p,) % 5%

0

As(1h,27 37,47 52 ) = ——— (27| 4|1~ H.78
1 5( e+7e7qag7q) 2512< ‘7‘ ><54> S34 ) ( )
with
(273 1) (57907 [5F) = A% (00) a0 ML (0)35 (07)" Nse
(use: (0),0 (0" =20508) = 2280008 (3,), N
=2(25) (57|, [17) , (H.79)
and momentum conservation (57| (pg —|—p4> 17) = — (57 (pl + P, +p5) [17) = = (671p,117)
we obtain
. ) . | [34](25)
A1 27 3t 4t 5oy — | 52)[21
? 5( etr“e—r19g 1 Fg» q) $12834 <54> < >[ ]
[43](25>2[21]
=1
(12)[21](34)[43](54)
(25)°
=—f———. H.80
" (12)(34) (45) (H.80)
2. Compute the color-stripped amplitude A5(17%, 2, 3,5 4;, 57 ) from scratch and verify that your
result is the same as A5(17,, 2.,3,,4,,5;7) with charge conjugation on the quark line.

184



Solution. We denote the outgoing gluon polarization €* by € and have

iAs(15,2,3,, 47, 57)

q’ 79779
— ¢ <2—’7#‘1—> <3_’%’ (p3+/¢4> 7#’5_> + <3_|7u (%"‘%5) %’5_> etV (p4 q)
2v/2519 834 S45 7
(H.81)
For a odd number of y-matrices we have the charge conjugation
<ki(%..,% ¢ = (q7 %...%]kﬂ, (H.82)
which we can apply to the quark currents in the squared brackets to obtain
iA5(1:+) 25_—7 (;7 4;—7 5;)
) 571y, (p, + 3t 5t + L |37
L ) 57 (P, +p.) 135 A 1 (P +9,) 1 137) e (pard)
2\/5812 S45 S34
(H.83)
If we compare (H.83) with (H.76), we see that we indeed have
iAs(L5 2,3, ,45,57) = iAs(1, 20,3747, 5 ) s
o (23)2
= —f————. H.84
"(12)(34) (45) (H84)

. Compute the colour-stripped amplitude A5(1',,2. ,37,4,,57) from scratch and verify that

et “e—1Yq ) FgrYq

your result is same as in the lecture, where it was obtained from A5(1%,2., 37,47,57) with

charge conjugation and parity transformation.

Solution. We denote the outgoing gluon polarization €* by € and have

iAs(15,, 22,35 4% 57)

; ]y, L |5t o B+ p) w150
— 5750 (27" [17) Sk (%;MV A w ;W’Y e (P4;q) -
(H.85)
We now use
€, (p, k)Y :—@ (‘k: ><p ’+‘p+><k D , (H.86)

and see that the choice of the reference vector ¢ = ps3 lets the first term vanish, and the
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amplitude becomes

‘A (1+ 9= at - i45—u—3+#4+53_
(15,20 7,85.57) = 5 o1y BT R ED gy
Using again the Fierz identity for Pauli matrices as above
(277 [17) (3% v [37) = 21311 (27| [37) - (H.83)
we find
iAs(15,2.,37,47,57)
i45)[31) oy iy 271 ) 137)
B 512[34] <2 ’7 ‘1 > S45
_ )1 271 (f, T4, ) 1B)
a 812[34] S45
~i(45)[31] (21)[13]
N 812[34] S45
PR | (H.89)

[12][34][45]

H.12 ¢q — gg scattering

4
_, - +— 4 &
A fﬁ b@&m?
—»—00000- 3 —»— 5 "3 eee,
3

Figure H.3: q(—p1)qr(—p2) — g(p3)g(ps) scattering.

[ L

L

The amplitude for q;(—p1)qr(—p2) — g(p3)g(ps) can be written as

M(1},27,34,4y) = ¢* [A(1F,2,, 3, 45)TT* + A(1}, 2, 44,3,) T T . (H.90)

q’7q” q’7q”

with the contributing diagrams shown in fig. H.3.
Compute the colour-ordered amplitude A(1},2.,3,,4,).
We have four helicity configurations for the gluons: 374", 3747 374~ and 374". The first two

are related by parity. The other two correspond to different colour-ordered amplitudes. Compute
the 374", 374~ and 374" configurations.

Hint: Use the amplitude of e"e™ — 7 for the Abelian part.
ig

V2

Hint: Use the colour-ordered Feynman rule 3g-vertex 3g — tr(T“TbTC)(g“p (g — k)" +
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9" (k—p)’ + g”(p—q)*) with (g1, g2, g3) carrying the outgoing momentum (k, p, q), Lorentz indexes
(u, v, p) and colour-indices (a, b, ¢).
Solution. We have the amplitude of e~ e™ — vy

L2300 = (ie 2] (1) P g 4 ) B ) ) ) L i)

S

from which we obtain the Abelian part of q¢ — gg

L2304 = (257 ] (o0 g1 4 i) M o) o).

(H.92)

We select the T*T piece, only the second term contributes to it. Then we add the non-Abelian

piece

iMy(1F,27 34, 44) 7o

2 (1 s o

[fu((pa— (pr+12)) - €3) + ¢5((—ps + (p1 + p2)) - €4) + (py +p,) (€3 e1)]) ‘1_> , (H.93)

where we use the shorthand notation €(p;) = ¢;. We use momentum conservation, the Fierz identity

on the T® matrices and strip off the coupling constant. The colour ordered amplitude is

iAs(1F,27,3,,4y) (H.94)

q°>7q>

N <\;§> <27‘ <¢(p3)7w¢@4) ™ 5_1; [2¢,4(p1 - €3) = 2¢,(ps - 1) + 2, (es - 64)]) (1*} '

1. For 374", choose € (7,2) with i = 3, 4.
Solution. If the reference vector is chosen to be ¢ = ps we have by egs. (H.55) and (H.67)
that (e3(2)ef (2)) = 0 and (27| ¢7(2) = 0 and the amplitude vanishes.

2. For 3747, choose € (3,2) and ¢, (4,3). Repeat the computation with €*(3,4). Although the

result is the same by gauge invariance, see how different terms determine it.

Solution. For 374~ we choose
277 137)
T(2) = <7“, H.95
63,;1,( ) \/5(23> ( )
_ (3% 7, |47)
3y = 2 1 el® /. H.96

and then use the identities (27| ¢,(2) = 0 and €5 (2)e5 (3) = 0. We see that only one of the
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non-Abelian pieces survives and we have

. 2 .
iAd(1F,2;,35.47) = <¢§> 8—122<2 4 B)(pa-ef (2)]17)

oo 2943 V2
5712<2 (\/5@3”34]‘4 ) [31]
_; 24°B (H.97)

(12)[21](23)

To rewrite everything in terms of right-handed spinor product we multiply and divide by (24)

and use momentum conservation —[12](24) = [13](34) to obtain

o g 243
Alle 2030 49) = Uy a3 3
o (24°(14)
= 2) @3 A An) | (F.%)
We now repeat the computation with
oy - A 37)
€5,(4) = NI (H.99)

and use eq.(H.53), ps-€5 (4) = p3-€;(3) = 0, and eq.(H.57), €3 (4)-¢; (3) = 0, so the non-Abelian

piece vanishes completely. We are left with

iA(1F,2,,3F,4,) = (\/_> ey p/2 +H3) (3)]17)

:(ﬁ) 2 y<43>|4+><3+12 x| o \4+ (3*1°)
(24)2[32][31
(23)[32](34) [43]
(24)°[31]
(23><34)(21>[31]
(24)%(14)

= 712) (23)(34) (41) (H.100)

=1

where we used momentum conservation (24)[43] = —(21)[13].

. For 3747, choose €, (3,4) and € (4,3).

Solution. We have the polarization vectors
_ (477, 137)
)= = L H.101
3 140)
T (3)= <7“ H.102
64,;;( ) \/§<34> ( )
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and use py - €5 (4) = p3- €4 (3) = 0 and €5 (4) - €5 (3) = 0, so the non-Abelian piece vanishes
completely. We get

=i (H.103)

where we used —[43](32) = [41](12) and then (13)[32] = —(14)[42].

H.13 Squared amplitude for qq — gg

The non-vanishing helicity configurations for gg — gg are

N T VAL T V| S APy

M05.2.5545) = |G T ey B0
N B ¥\ CIOF @3%(13) .o

M 05205 4) = [ T e T 010

with the other amplitudes given by parity flip. Square the amplitudes and compute the sum over

helicities >_ |M (1, 24, 3¢, 49)|*.
hel

Solution. We fix
" = S
= AT (107
such that
M (1F,2,,35,4)) = g° (@ T®T* + a;TT) . (H.108)
Then

MM (1F,2,,35,4,) = g* [(laa|*+]az]?) tr(TS T TT*) + (afaz + ayay) tr(TTUTST™)]
colour

(H.109)
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and the colour traces are

2

N+ —
(T THTHT) = = tr(TT™)

c

N2 —1)°
= (CN> . (H.110)
Using the Fierz identity for SU(N,) matrices,
(oI, = Gl — 85 (H.111)
we can write
1
tr(T 7T T%) = (tr(T%))? - A (T
N2 -1
=— CN . (H.112)
We have
3 3
= 2= (H.113)
512523534 5712523
las]? = 354514 _ 5242814’ (H.114)
512534513 S12
. (24)°(14) [41][42]°
ayas =
12 (12)(23)(34)(41)[21][42][34][13]
_ S54514 (H.115)
S19534(23) (41)[42][13]’ '
and
3
* * 824814 1 1 )
10y + aya9 = ( +
2 sty \(23)(14)[42][13] ~ [32][41)(24)(31)
_ syus14 [32][41](24) (31) + (23)(14)[42][13]
512 523514524513
_ sysu (23)[31][32](31) + (13)[32](23)[13]
51a 523514524513
_ 5,514 2513503
3%2 523514524513
- 2824 : (H.116)
512
where we used momentum conservation (24)[41] = —(23)[31]. As before, we can use the shorthand
S = S12, t= S13 = S24, U = S14 = So3, (Hll?)
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to obtain the squared amplitude

[/t (N2—1)7 _2N2-1
+ 9= at 4\ 12 _ 4 c c
§|M(1q=2q73gv4g)| =9 <52+82> N, g N
t (N2-1)> _$2N2—1
4 2 2 c c
= t e 9
g ( +u)32u N, s2 N,
_ (Lt (N2—1)>  _$2N2—1
—9 \u 52 N, s2 N,
[t (N2—1) _2
_ 44 c 2
=9 N —2?NC(NC—1) : (H.118)

where we used s? = (t* + u?) = t* + u* + 2ut on the third line.

M(l;,Q;,B;A;) is obtained from M (1;,2;,3;,4;) by swapping labels 3 and 4, thus the

squared matrix elements are related by swapping the u- and t-channel,

PN IY 716\ M 2 _
§|M(1q,2q 3,40 ) =g Y 25N (NZ=1)| . (H.119)
The other amplitudes are given by parity flip,
oIM (17,25,3,,48) [P =DM (17,2,,35,4,) 17, (H.120)
col col
SOIM (15,28,85,4,) [P =DM (1F,2,,3,,45) 7, (H.121)
col col

SO
N2 —1)2¢2 442 2 +u?
M (14,24,3,,4 2 _ gt [l — 4N, (N? -1 H.122
C(%QJ ( O =g g 9)| g Nc tu ( c ) 32 ( )
H.14 Four-Gluon Amplitude
Compute the four-gluon sub-amplitudes,
1. Afree(17,27,3%,41)
Hint. Use the polarizations € (1,3), € (2,3), €7(3,2) and ¢ (4,2).
Solution. We use the identities between polarization vectors,
€ (1,3)e (2,3) =0, €(3,2)e"(4,2) =0, €(3,2)e(2,3) =0,
et(3,2)e(1,3) = 0, et (4,2)e(2,3) =0, (H.123)

so the only non-vanishing scalar product between polarization is €*(4,2)e™(1,3) and we have
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further
e (pi, k) - pi = € (pi,k) - k=0, Vi. (H.124)

Let us compute the Feynman diagrams using the colour-ordered Feynman rules,

iAe = (29"°9"7 — g"79"" — 9""9") €, (1,3)€, (2, 3)e

= 0. (H.125)

N =
™+
—
vCO
[\)
S~—
@)
JF
—~
e
[\
N—

We have
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iAp = <\/§> S—Me_”(l,S)e_”(Q,3)e+p(3, 2)et(4,2)

. <(2p1 +p4§(1 9" — <p{$ 2p4)ugaa + (pa —p1)° gw)
: <—M9a — (p2 — p3)aMﬂQW8a>

—0. (H.126)

The non-vanishing contribution is

1 4
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iA. = (\/5) S—me_“(l,3)e_”(2,3)e+p(3,2)e+"(4, 2)

. <(p1 —p4)a%'wg (2p2 —|—p{§i%’0_ (2291 +p’5ﬁ(igua>
. ((p3 - p4)a%‘9 <2p4 —|—p/§5(,)) oo — (2}?3 +M((), %3

_ (é) @) p(E(32) P (13) € (1,2)
0 (_ (371, |2+>> (271p,137) (_ (37 1) <2|7“|4>>
S12 \/5[32] \/§<23> \/5[31] \/§<24>

_2¢ [3A](12)(24)]43]2(21)[34]

s12 4[32](23)[3A7(247
o (12)?%[34]?

Csw (23)132]
— ZLQ[?A] (*)

(23)[32](34)
o (12)3
~28)(34)an)

(12)*

= " T12)(23) (30 (A1) (F.127)

where in (%) of eq. (H.127) we multiplied and divided by (21) and use momentum conservation
[32](21) = —[34](41). Note that in () (H.127) we could also multiply and divide by [41]? and
use momentum conservation [41](12) = —[43](32) and (34)[41] = —(32)[21] to obtain

[34]°(32)"
(23)[32](32)[21][41]
[34)°

- i[u] [23][34][41] ° (H.128)

1A, = —1

Since the diagram with the crossed gluon legs does not contribute to the color ordered ampli-

tude, we have
PAY(17,27,37,47) = iA.. (H.129)

CAfee(17,21,37,41)
Hint Use the photon decoupling identity for gluon 1.

Solution. The photon decoupling identity for gluon 1 is

AP(1,2,3,4) + AF*°(1,3,4,2) + A7*(1,4,2,3) = 0. (H.130)
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thus we can write (using cyclicity)

442&11772+’3774+):: _u4f“117,37a4+72+)'_*42“137717’4+,2+)

B (13>3 <31)3
“<< 1 <21>+<14><42><23>>

34)(42)
(13) ( 11 )
(42) \ (34)(21)  (14)(23)
_ (13)3 ((14)(23> + <34)(12>>
(42) \(34)(21)(14)(23)
(13)*
~ (12)(23)(34)(41) ’ (H.131)

where we used the Schouten identity (12)(34) + (14)(23) + (13)(42) = 0. So we get for the
MHYV amplitude,

(ij)*

Alee(1,2,3,4) = H.132
where 7 and j are the two negative helicity gluons.
H.15 Kleiss-Kuijf Relation
Write the Kleiss-Kuiff relation
AT o) {B) = (1 S AT (Lo({ad(87).m) (H133)

oc{au{pT}

for

1. A(12534) with {a} = {2}, {8} = {3,4},
Solution. A(12534) with {a} = {2}, {8} = {3,4} has {a} U {87} = {2,4,3}. So

{a} U {BT} = {(243), (423), (432)}, (H.134)
and

A(12534) = A(12435) + A(14235) + A(14325). (H.135)

2. A(12354) with {a} = {2,3}, {8} = {4},
Solution. A(12354) with {a} = {2,3}, {#} = {4} yields

A(12354) = —A(12345) — A(12435) — A(14235) . (H.136)
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3. A(123654) with {a} = {2,3}, {8} = {5,4}.

Solution. A(123654) with {a} = {2,3}, {8} = {5,4} has {a} U{BT} = {2,3,4,5} and
yields

A(123654) = A(123456) + A(124356) + A(124536) + A(142356) + A(142536) + A(145236) .
(H.137)

H.16 Four-gluon scattering: multiperipheral decomposition

Consider the scattering process gg — gg and

1. Compute Mf*¢(17,27,3%,4") using the multiperipheral-based colour decomposition.
N(NZ —1)

Hmt USG fabcfabd — Nc(gcd and falagcfca3a4fda3a1 fda4a2 — 5 .

Solution. We have

MIree(17,27,3%,4%) = g?[Fuaze e A(17,27, 3% 4F) 4 Fasscfeazas A(17 3+ 97 41)
— _QgQ[fa1a20fca3a4 A(]__, 2—’ 3—&-’4-‘,-) + fa1a30fca2a4 A(l_, 3—}—’ 2—’4-1—)] ’

=:C1 ::al__++ =:C2 ::a;—++
(H.138)
where we used F®°¢ = /2 fabe.
2. Square the amplitude.
Hint Use fabcfabd — Ncécd and falachca3a4fda3a1 fda4a2 — N?(Z\gffl).
Solution. To square the amplitude we need to compute the colour-factors, which come

from the sum over colour. We have ¢! = ¢; since f&* = fa% and furthermore c,c} = cyc} =

c1c1, since it is simply a relabelling of the summation indices. We compute

clep = (fa1a20fa1a2d)(fa3a4c]ca3a4d)

= N_0.

=N?(NZ-1), (H.139)
c1cy = fa1a20f0a3a4 falagdfda2a4

N2 (N? -1
= (2) (H.140)
So the squared amplitude reads
M1, 27, 37 40P gt N2 (N2 = 1) (Jay ;)
N02 (N02 B 1) —_ —_ * —— —— *

L e (a7 (ay ) +ay (e ) )} , (H.141)
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with

R 0 (H.142)
! (12)(23)(34) (41) ’
——++ <12>4 H
= 143
“ (13)(32)(24) (41) ° (H.143)
we have
a——++(a——++)* — <12>4 [21]4
! 2 (12)(23)(34) (41) [31][23][43][14]
_ 515
814823<12> <34> [31][42]
4
_ _S12
513534
3
=2 (H.144)
514513
where we used momentum conservation [42](21) = —[43]|(31) and all the other contributions
can be computed in complete analogy,
2
oy TP = % (H.145)
14
— 2 Sl
14524

. Compute the helicity configurations and sum over helicities.

Solution. To compute the sum over helicities we use that only amplitudes with two

negative helicities are non-vanishing. Furthermore, due to parity we have

[Me(17,27, 35, 47) " = [Mye(17, 27,37, 47)7, (H.147)
[MJPee(17, 2%, 3%, 47) P = [My**(1%,27,37, 4%, (H.148)
|Mree(1F,27,37,47) 2 = | Myee (17,21, 37,41, (H.149)

So the squared matrix element, summed over colour and helicities reads
M = 2| (17, 27, 3%, 40P+ ML, 27,37 40 M (1, 27,37, 4) ). (H.150)

The first two summands only need one computation due to the cyclic invariance of the matrix

element,

|Miree(1F,27,37,47) 2= | Me(17,27, 3%, 47)? 12 (H.151)
2—3
3—4
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To express everything in terms of scalar products we use the partial amplitudes (H.138),

4
= (13) (H.152)
(12)(23)(34)(41) ’
. (13)* H
_ 153
e (13)(32)(24)(41) ’ ( )
with
a_+_+<a_+——|—)* _ S:%?) (H 154)
1 2 T s )
a2 = 25342 : (H.155)
512574
i Sy H.156
ot = 2 (H.156)
14

So our squared matrix element reads

IMP = 2|17, 2, 37 4P M, 2 37 40P H M 28,37, 4) )

57 s s3 52 s s3
=8 NZ (N2 1) [(Cl2 g 2 g Pl (Th o om

2 2 2 2 2 2 2
S14  S14824  S14513 591 521531 591524
4 2 3
+( So4 S94 513
52,82 52 s2,8
12514 14 14512

2 (825 + s13812 + 8%3)3}
535533 (812 + $13)°
(5%2 + 3%3 + 3%4) 5

2 2 2
4575513514

= 8¢'N? (N2 1) |

=8¢"'N? (N2 —1) : (H.157)
where we first wrote everything in terms of the independent kinematic invariants s;» and si3
and then used si19 + s13 = —s14 to highlight the singularity structure. To obtain the fully
differential cross section we have to average over the colour and helicities of the initial states

by multiplying (1/2)%(1/(N? — 1))%. One can easily verify that our result is the same as

_ 1 4N? S12813  S12514  S13S14
M2:7 2: c 4 _ — — , H.158
M= T ™M= R T R} (H.158)

which can be found in reviews of two-jet production at hadron colliders.

H.17 Four-gluon scattering: trace-based decomposition

Consider the scattering process gg — gg and

1. Compute M}™(1,2,3,4) using the trace-based colour decomposition.

2. Square the amplitude and compute |Mi*¢(17,27,3% 47)|?
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Hint Remember that you can use the U(N,) completeness relation for gluon amplitudes.

Solution. In the following we use the shorthand notation 7% ...T% = T*-" The colour

ordered amplitude may be written, after applying reflection symmetry, as

My™(1,2,3,4) = g>A(1234)[ tr(T"***) + tr(T"%%)] + g> A(1324) [ tr(T****) + tx(T"**°)]
+ g2 A(1342)[ tr(T"**?) + tx(T"**)] . (H.159)

This can be further simplified by using the photon decoupling identity (replace e.g. T by the U(1)

generator, 1)
A(1342) = —A(1234) — A(1324) . (H.160)
which yields

Mj™(1,2,3,4) = g>A(1234) [tr(T") + tr(TH?) — tr(T"?) — tr(T"2%)]
+ g2 A(1324) [tr(T"*) + tr(TH) — to(T%) — to(T%))] . (H.161)

c2

Instead of rewriting everything in terms of the structure constants, we want to compute the color
factors directly from the trace decomposition. We use tr(T*")" = tr(T™~1). We saw, that the color

algebra can be performed for U(N,.), that means we use the completeness relation,
(T*)' (T*)" = 6,05 (H.162)
Since the generators of U(N,) are hermitian but not traceless we have
tr(T%) # 0 5% = N2, (H.163)
To perform the colour algebra, we use
tr(AT*B) tr(CT*D) = tr(ADCB) , (H.164)
and

tr(AT*BTC)|p21= tr(AC) tr(B), (H.165)
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for A, B, C, D being strings of generators of U(N,). Let us e.g. look at

tr <T1234> (tI‘ (T1432> = 1r <T1234> tr <T2341>
tr (T234T234)

tr (T34> tr (T34)

= tr(T'T")

— §aaaq

= N?. (H.166)

So, computing the colour factors boils down to applying the two identities (which is completely

algorithmic) and gives

tr (Tl 2,3, 4)2 — N2, tr (TLQ 3 4) tr (T1,2,4,3> = N2, & <T1,2,4,3)2 = N2,

tr (Tl ,2,3, 4) tr (Tl ,3,2, 4) — tr (TI,Q 4 3) tr (T1’3 2,4) — Nf) tr <T1’2’3’4) tr (T1’3’4’2) — N37

tr (Tl ,2,4, 3) tr (Tl ,3,4, 2) — tr (T1,3,2 4) tr (T1’3’4’2> — Nc27 tr (T1,3 4,2)2 — Nc27

tr (Tl ,2,3, 4) tr (Tl 4,2, 3) — tr <T1’2 4 3) tr (T1’4’2’3> — Nc27 tr <T1’3’4’2) tr <T1’4’2’3> — Nc27

tr (Tl ,2,3, 4) tr (Tl 4,3, 2) — tr (TLZ 4 3) tr (T1’4 3,2) — N527 tr <T1’3’2’4) tr (T1’4’3’2) —_ Nc27

tr (T5%42) tr (T143?) = oo (TH428) g (TH432) = N2, tr (T432)" = N2, (H.167)

We get, as before,
aic) = ANZ (=1 + N2), c1¢y = 2NZ (=14 N2). (H.168)

The rest is completely analogous to the multiperipheral decomposition.

H.18 Multi-Regge Kinematics (MRK)

Consider the scattering of 2 — (n — 2) gluons g(—p1)g(—pn) = g(p2) ... g(Pr-1)-
In MRK: p™ > ...>>pi 1, py < ... < pp_y-

1. For the helicity configuration (17,2%,3%, ... (n — 1)*,n™), compute the sub-amplitude
A, 2737 ..., (n—1" n").
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2. Compute A (17,27,

Solution.

4
A 2030 (=1t ) = (Ln)

(12)(23) .. {(n — 1)n)(nl)

- i
P21 p?pu\/go e Pn-1l ’iﬁl
s

P21P3L -+ Pn-11 '

equals (17,27,3%, ..., (n — 1)*,n"7).
Solution.

A28 G- G+D . (n =10, 51
(1n)*

(12)(23) ... (G = DG + 1)) ... {(n = 1)n)(nj)(j1)

52

V=papi /s

(H.169)

L= G+, (n—=1)",n",j7) and show that up to a sign it

igj_ggj_ Z;/...‘u_ %...7;—7+ —1 —n-pi (—1 il
P \/p; Py Zh iy =i (=i el (i),

Dt
s

B P21P3L -+ -Pn-11L .

3. In eq. (1.199), it has been shown that

tree _ n—2 az Ap—1 tree
M yysyss . syn = 9" - (F2 0 F7Y) o ATC(L2,

Show that in MRK, the four MHV configurations,

(17,243, ..., (n—1)*" n7), (17,2%,3%, ..., (n—1)7,
(1,273, ..., (n—=1)*" n7), (1t,27,3%, ..., (n—1)7,

py

A

(H.170)

(H.171)

(H.172)

differ only by an overall phase, and that all the other MHV configurations are power suppressed.

Solution. We only need the colour ordering (1,2,...,n —1,n).

(a) For the MHV configuration (17,27,3%,...,(n — 1)*,n") we have eq. (H.169).

(b) In order to compute A((17,27,3%,...,(n—1)",nT)) we just need to replace (1n)* with

(1(n — 1))* in eq. (H.169),

(In) = =/ (=p)(=pp) = Vs =~ —\/P3 D1,

—pf
(I(n—1)) = ipp—114| —-
pnfl
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Use the mass-shell condition ptp~ = p,p?%, then

(1 =0 =i\ [ = plp = iy [ VS, (H175)
n—11

Prn-11

since /p:‘hu is a phase, from (1n) to (1(n — 1)) there is only an overall phase change.
Pp-11

(c) For the MHV configuration, ((17,27,37,...,(n —1)",n")) we just need to replace we
just need to replace (1n)? with (2n)* in eq. (H.169),

(2n) = i/ —p;ps ~iV/s. (H.176)

Thus from (1n) to (2n) there is only an overall phase change.

(d) For the MHV configuration, ((17,27,3",...,(n —1)7,n")) we just need to replace we
just need to replace in eq. (H.169) (1n)* with (2(n — 1))*

+
2 — 1)) = pa_yyy| 2= = [P ptp |~ [P s (H.177)
Pn-1 Prn-11 Prn-11

So again from (In) to (2(n — 1)) there is only an overall phase change.

(e) Every other MHV configuration will hate in the numerator (jk)* where j = 1,2,n — 1,n
and k =3,...,n—2or j,k=3,...,n— 2 and it is straightforward to see that they are

all power suppressed with respect to the four we just computed.

H.19 Off-shell current J#(17,27)

Compute the off-shell current,

JH(1,2) = V¥ (p1,p2)J,(1)J,(2), (H.178)

(p1 + p2)?

with

14 /i 14 4 14
Vi = —[2¢""p5 — 2¢" PV + "7 (p1 — p2)"] , (H.179)
V2
and J#(i*) = ¢/L(ps, ¢;). For positive-helicity gluons, take the same reference vector ¢ and show that

it can be written as

1 (I ) M)
V2 (q1){12)(2¢q)

JH(1F,2F) =

(H.180)

Solution. In V§*? the ¢g"? term does not contribute, because it contracts the polarization
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vectors yielding €, (1,¢q) - €.(2,q) = 0. Thus

b g up oy S W 1) (a0 [27)
o+ 12) \/5(29 ps — 29"pY) S Vo)
1 <<qm¢2|q+>+<qmpl |q+>>

2(12) N (q1)(29) (q1)(2q)

LWl th)le) (H.181)

2 {q1)(12)(29)

JH(1T 2T) = —

where we used

pla)y =) gy e i) =" (H.182)

H.20 Off-shell current J#(17,2") and J#(17,2%,3")

Compute the off-shell currents J#(17,2%) and J#(17,27%,3") using the polarization vectors

" (p1,p2), ' (p2,p1), el (ps3, p1) - (H.183)

Solution. We have
JH17,2%) = Tty . p2)J,(17)J, (21, H.184
(17,24 = o V)LL) (2 (1184

where in V{"?_ the ¢g"? term does not contribute, because it contracts the polarization vectors yielding
€-(1,2)-€4(2,1) = 0. Thus

_ ’ ) 2, (1)) (17]7,127)
Jr1- 2t = — Y (ogrepy — 2gmyf <—< v P12 ] _y), H.185
We have furthermore
—1 v — v — O
JH(17,27,3%) = P, {Véu P (p1, Pog) J,(17)J,(25,3%) + VI (P, ps) JLA=27)7,(3F)
VR, (0),(20) (37 (H.186)

where in V{"?_ the ¢”? term does not contribute, because it contracts the polarization vectors yielding
e (1,2) e (ps, 1) =0 for i = 2, 3. Likewise, V/*"” does not contribute, so

f(1— ot a4y L 1 1o pv . p (I7[v27)) 1 <17|7p(¢2+17)3>|1+>
28 = g s - (< 2 ) S
1 (17| yu a3 117) <_<1_’P2,3’2_>>

V2PZ, (12)(23)(31) [21] '

(H.187)
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Note that P, 3]27) = ps[27) and of course ;> = 0, and we can write

_<17|P2,3|27> _ <1‘|,¢3}7ﬁ2|1+> (1~ |,¢ Pisltt >

_ H.188
21 P2, P2, (HL155)
So,
1 (1° 1) (17 "
Jﬂ(l_’2+73+) — 7< ’fY,U«FQ,3| > < |¢3P1,23| > 7 (H189)
V2 (12)(23)(31) PPyPiy
which is the first non-trivial case of the formula for the J#(17,2%, ..., n™) current.
H.21 Eikonal identity
Prove the “eikonal identity”
y i) Uk (H.190)
= (ig)(q(i +1))  (ja)(ak)
Hint Prove it by induction using Schouten identity.
Solution. The first term in the induction, £ = j + 1, such that ¢ = j = k£ — 1 is trivially
fulfilled. Let us suppose that the identity holds when 7 < k — 2,
k—2 . 1 . 1
iz (e +1)) (g gk —1))

then

L GGn) Gk (k=R

= (igai+ 1)) Gk —1))  ((k—1)q)(qk)

Gk — D)k — Da) gy + {(k — D) G (alk — 1))

- Gab(alk — D)0k — Da){ah) ' (H.192)

Using Schouten identity,

(J(k =1)){qk) + (Ga)(k(k — 1)) + (jk){(k — 1)g) =0, (H.193)
we can write

’““f (i(i+1) (=g (jk){egk—T])
= (ig) (gl + 1)) () lal—T)) ((E—1)q)(qk)
Uk
~ (a){gk)

Q.ED. (H.194)
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H.22 A useful identity

Prove the identity

(i + 1) B 1= Py,
Z L <q PiJrl,n:( | 1’7
= q(i + 1)) (1q)
with P, = pi + -+ Dy.
Hint Use the eikonal identity IZ (i “ﬁ)l» <j;§]z3k>.
Hint Use the eikonal identity and induction.
SOLUTION I: We start with
= (ii+1 _
ZM <q Pi+1,n
= (i) (i + 1))
(12) _ (23) _
= q +- + q +- +
(1¢)(q2) < ‘ (PQ pn> (2¢)(g3) < ‘ (Pg, pn)

Now we collect the coefficients of the p, terms,

_ ) .
g Z+1)>< ‘p +Z 2+1 'pnl
and use the eikonal identity for each coefficient,

(1n)

o 7 e (=

_ (171 Pan
(1q)

B (17| Pl,n

o (lg)

SOLUTION II: The first therm in the induction, n = 2, yields

12) (12 N
<1é (=7 >£;%7M @
_a

7| P
(1g)
. (17 P1,2
- (lg)

Let us suppose the identity holds for i <n — 2,

”f (ii +1)) (¢

_ (TP
& i) (gl + 1) Pivin =

(1g)
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(H.195)

<1Q> (q2)

((n—Dn)

o= Dam @ 1P
(H.196)
(|p,,  (H197)

(12) n

i 2|
(H.198)
(H.199)
(H.200)



then

oG+ ) (7| Proy L GG+1)
2 Giglati+ ) [ Pran = a) = g0y 2,
(17| Pl,nq n (In) <n+‘

(1g) (1q) {gry
(17| Pr

= s H.201
1y (1200
where we used the eikonal identity on the second summand.
H.23 Off-shell current J#(17,2",... n")
The recursion relation for J#(17,2% ... n™t) is
. _
Jﬂ(1—7 2+7 s ,TL+) = P12 {‘/3# p<p17 PZ,n)JI/<]' )‘]P<2+7 ce 7n+>
n—1
+ Y VIP(Pry, Pyan) (17, i) (0 + 17, ..o n™)
i=3
n—2 n—1
VT ST TG DL+ ) L (H.202)
i=1 j=i+1
Using induction, compute J*(17,2%, ..., n") with € (py, p2) and €} (p;, p1) for i =2,... n.
Hint Show that V}"”? and the g”’-term in V{"” do not contribute, because they contract

directly two current, yielding terms like (174" [27) (17|77 [17) and (17| 4*~y* 1) (17|95 [17T)

which can be Fierzed away, and reducing the recursion relation to

_ —1 v _
J/l(l 72+7 s ,TL+) = PT {‘/})M p(pb P27n)*]1/(1 )JP(2+a s 7n+>
n—1
+ > VEP(Prg, Piin) (17, iT) (e + 1%, oo n )| (H.203)
i=3

with V{"(P, Q) = J5(20"Q" — 29" P?).
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Solution. We have

Bmi1— ot + —1 1 wp pv uv, P _<1_’Pyl"2_> i <1_‘7pP2,n‘1+>
2ty = gl erem - (U ) Do
=:(1)
— up pv . HY PP L <1_"7pPi+1,n‘1+>
2 Q9P = 20" P ST ) (0 = D)
—(2a)
1 <17|71/P2,i|1+> LTy Pl,k‘1+>
V2 (12) - (14) k;) Pﬁ:_lpﬁk ‘ (H.204)
—:(2b)
with
<1_|7MP2,7L |1+> _<1_| PQ,n |2_>
W=l D) () ( 21 )
(U yuPon |19 (17| Pap, 117)
02) - Dny(nl)  Pfy (H.205)
and
(e |1/>+1m2 19 (P 1)
(2 Z§< ) G ) {0 — D)
B (1~ |’YMP2, ’1+> (17| Pl,z’Pi—i—l,n 117) : <1_|.’¢kp1,k 117%)
a2)- () (1G+ 1) {(n— 1>n><n1>)k3 PP 0
The numerators can be summed,
<1_) PivinPa ‘1+> <1_' VP2 ‘1+> ; (H.207)
and we add
(17| PisinPisin|1T) = Phi, (17]17) =0, (H.208)
such that
pd 2 = © + B ,me 1"
(20) x (2b) = <12><1 Iz(nP_lll Zg +1 (17| PrvanPan 1) > 3< ]L]éfk 1P12|k )
(H.209)
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1
=3 i=k

]

\IMI

2

Figure H.4: Sketch of the proof of the nested sum rearrangement. Same coloured dots represent one
term at a fixed ¢ (left arrangement) or k (right arrangement) respectively.

Let us deal in particular with

w (i +1) (17| g Prs 1)
;’ N \PHMZ A (H.210)

1(i+ 1))

Using the sum rearrangement shown in fig. H.4, we can write

(1 [P Pk 1)

b i+ 1)
ey P X e
w1 |:¢,Jb1k [yt G+ 1))
_l;’; P PPy Zz;; <(i1)>(1(z+1 ’PZ“"
(| pPre 1) (7| P Ha11)

_Z Pl 1Py (k1)

where we used the same derivation as for the “useful identity” in sec. H.22 to go from the second to
last to the last line. So we get

+) _ 1 <1_‘ ’VuPQ,n ‘1+>
V2P2, (12) -+ {(n — 1)n)(nl)
(U Pop, 17) 22 (k| PrgrnPon 1) (U719, P ’ﬁ)} . (H212)

_l’_
<= 2 *) P2, P,

JHAT,2T, . n

We will focus now on the term in the squared bracket and use Py ,, = Py + Pit1n,

“f (b PrsrnPon 117 (17§, Pri [17)

P (k1) Pry Py
Z (1= ‘pk}blk‘1+> (P >2_ <k|P1,kP2,n|1+>}
- PEy_ P, . (k1)
S AP IT) (s TPl S TP 1) 0| PP )
PY_ Py, o Pty = Pl Py (k1) ’
(H.213)
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where the highlighted term corresponds to the expected result. To finalise the prove we have to show,
that the remaining term,

R (7 Pop, 1) (U71p Pra 1Y) 1P Pra I19) (k| Py o 1)

. (H214)
P2, Py & PaPh )
vanishes.
We start by rewriting the sum,
Z 1 ’ka1k|1+> <k |P1kP2n|1 > _n 1(_M><k+|}bl,k|l+> <k7|P1,kP2,n|1+>
PY Py, (k1) ) P Py, (e}
B nil (17| Pl,k?kf}bmszn 117)
k=3 Pik—lplg,k
=1 2(ppPrg—1) (1~ A 1Y — (Prg)? (1 a1
(use Clifford algebra) = 3 (PPr-1) { |P1”“PZJ’32’ >PZ (Prp)* (71§ P 1)
=3 Le—141k
_ ”Zl (PEy = Plict) (V[ PraPon [17) — (Pri)* (17| g Pan I1F)
k=3 Pl%k—lpl%k
_ nz_:l (17| Pl,k—lPQ,n 11%) B nz_:l (17| Prsplon 1)
k=3 P12k 1 k=3 P12J<
" o(1” 1~ 1t
(extend sums + k£ — k — 1 in second sum) < L k;)ﬂ/ﬁ*y— Sl Pl’n;PQ’n 1)
M1 k-1 Pf,_4
(P BT | (| PP )
4642/P12k P122
- DY (] Pop, 1
(use Py = Pi — py and (11) = 0) = 5 ”;PQ I A |P]§ I (H.215)
1,n—1 1,2

This rewriting makes obvious, that the remainder R in (H.214) indeed vanishes, which is what we
wanted to show.

H.24 Quark-quark scattering

qr: 2~ (}}J c 47

gr,: 17 g 37"

Figure H.5: ¢ — ¢'¢’ scattering for the amplitude My (17,27, 37, 42).

q2°q7%¢"D
Let us consider quark-quark scattering with different flavours ¢, ¢’ as shown in fig. H.5.
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i) Compute the amplitude My(1},2;,37,47).

q°°q7%q

ii) Square the amplitude.

iii) Compute the other helicity configurations and sum over helicities.

Hint Use the results of ete™ — ptu~.

Then repeat steps i), ii) and iii) in the case where the incoming and outgoing quarks have the

same flavour.
Hint You must subtract the contribution with quarks 1 and 3 exchanged. Why?

Solution. We have

Mi(1F,27,35,47) = g2 (T)R(TH A1, 27,35, 42) (H.216)

q°>°q°¢ qr°qrYq">

where up to a factor 2, the colour-stripped amplitude is the same as the amplitude for ete™ — ™

we computed in eq. (H.30), so it is

PA(LY27,35,47) = - (24)[31]. (H.217)

q°q° 9"
S12

The colour factor for the squared amplitude is trivially computed to be

tr(T°T°) tr(T°T") = §*°6*" = N? — 1, (H.218)
SO
52
|My(1}, 27,30, 45 )P=g*(NZ —1)-22. (H.219)
312

For \M4(1;, 27,3, 4;5)|2 we can use charge conjugation on the current of the outgoing quarks 4 <> 3

to immediately get

IMy(1F, 2,3 4;)|_9(N2—1)814. (H.220)

q 439>
312

The last two configurations are obtained from the already computed one by parity, so the square

does not change and we have

2 o 42 3%3 + 3%4
Z|M4(1q721773q’74¢7’)| - 29 (Nc - 1>87227 (H221)
hel 1

or if we average over the initial colours and helicities, i.e. divide by 4N?Z,

94(Nc2 —1) 313 + 514
2N2 52,

Z|M4(1qv 2(1? 3(1” 4@’)|2:

hel

(H.222)
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In the case where the incoming and outgoing quarks have the same flavour,

Mi(17, 27,37, 47) = (T2 (TR AT, 27,35, 47) — (T2 (T AGBy 27,154 47)

qr°q°%q° 7q qr°q2Y¢ ¢ qr'°q° 797 7q

= | (T2 (T @?1[231] —(T*)2(T*);! <2‘i>3[213] J. (H.223)

To square the amplitude we need the additional the colour factor,

N2 -1
tr(TT*TT?) = ——— H.224
1”( ) Nc ’ ( )
and the additional term,
24)(31]42](31
s - 2OBUEAGY -
S12814
SO
2 2 2 N2_1
My(1F, 27, 3%, 47) = 4[(‘913 513) N2 1) -2 Te o) H.226
Milly, 27,3047 = 9 5%2+3%4 (e ) 512514 Ne ( )
The other helicity configurations are
- Q- _ 2 )2 a\t <23>[41]
Mi(1].24.3;47) = (TR (T, — (H.227)
and the one with the quarks 1 and 3 interchanged,
S gty 2 payia (rayia (21 [43]
Mi(37,25,15,45) = g (TE(T)i =, = (H.228)
Note that they cannot interfere. With
2
oo s
|M4(1;_72q73qa4¢—;)|2: 94(Nc2_ 1)%7 (H229)
2
IMi(3],27. 15 49 P= g' (V2 = )22 (H.230)
32
and the other helicity configurations obtained by parity we have
_ 1
Z|M4(1Q7 2¢?a 3Q7 4Q)|2 - m Z|M4(1Q7 2!?7 Sqa 4q)|2
hel ¢ hel
_ g (N2 2_ 1) {5%3 ‘; sty | i "2‘ 515 2 573 . (H.231)
2N; S12 S14 N, 512514
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H.25 g¢gg — H and gg — Hg scattering in HEFT

1. Compute the amplitude for Higgs production from gluon fusion, gg — H, in the Higgs Effective
field theory (HEFT), for the two independent helicity configurations 172" and 172%.

Hint The color structure is the same as for the gluon amplitudes, thus the same color
decomposition of the amplitude and the same properties of the sub-amplitudes (cyclicity, re-
flection, U(1) decoupling) hold.

Hint In HEFT, the color-ordered Feynman rules are

M = (—3 ) it (1717 (0~ W)™ — k") (1)

where v is the Higgs vacuum expectation value.

Hint Note that it is not possible to choose the same reference null vector k* for all the

polarization vectors.

Solution The gg — H amplitude is

A

M, = tr(T9T) Ay (1, 2). (H.232)

3w

There is only one sub-amplitude,

iAs(1,2) = i((p1p2)g""* — ' ph" ) e (p1)e? (p2)
= 1((p1p2)(e(p1)e(p2)) — (p1€(p2))(p2€(pr))) - (H.233)

Since we cannot find a common reference null vector £, an obvious choice is to take e’(‘l ) and

6?2,1) as the polarization vectors, where we used the notation € (p;, p;) = Eﬁ‘,j)' Since

Pi€i ) = Pi€i =0, (H.234)

the second term in A, does not contribute. So

2
. .m
iA5(1,2) = ZTH(E(LQ)E(M)) : (H.235)
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where we used p; + pa + py = 0 and 2p;p; = m?,. We have for 1727,

+u <k37| 7“ |]7>

o= 2y (H.236)

SO

mi (27| [17) (17 [ [27)
2 V2(21)  V2(12)
_om%2(12)[21]

2 2(12)2

mi; [21]

TR (H.237)

iAs(17,2%) = i

The (——)-configuration is obtained by parity.

For the (4—)-configuration we have 63,2)6(_2 1y = 0, so neither (+—) nor (—+) contribute.

2. On physical grounds, can you show that the result for 172~ holds to all loops?

Solution The Higgs boson has no spin, and so no angular momentum. In the Higgs rest
frame, the two gluons are back-to-back, they fly in opposite direction. For their total angular
momentum to vanish, they must have equal helicities. For the same reason, ¢4 — H cannot
exist for massless quarks, since the helicity is conserved on the quark line. It exist only for

massive quarks wit a helicity flip on the quark line.

So A(17,2%) =0 to all loops.

3. Compute the squared amplitude for gg — H.

Solution We have
as m3 [12]
M. = tr(T"T")—
2+, +) = tr )3m0 2 (12)
as m% [12]
— faraz 8 H H.238
3r0 2 (12) (H.238)
with
2
M. 2_ (s 2y H.239
M )P= (v - )™ (1.239)

With | My (+, +)|*= |Ma(—, —)|* the helicity and colour-averaged matrix element is

2

AEE T (20,2 vz - 1))
- (3(;‘;)28(]\[2 — 1>mj£,. (H.240)

4. In HEFT, compute the g¢g — Hg amplitude for the helicity configurations 17273% and 1-273%.
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Hint The relevant vertex is:

;i ) L ('T“TbTC) g"Plg — k)" 4+ g"" (k —p)? + ¢ (p — )" | + non-cyel. perm.
Ty

V2

(2)

Solution The mutiperipheral colour decomposition of the gg — Hg amplitude is
M(1,2,3) = — 2 gpabe A, (1,2, 3) with Fabe = j\/2 fabe (H.241)
Xy

There is only one sub-amplitude A3(1,2,3) to compute (in the trace-based decomposition there
are two sub-amplitudes to compute, A3(1,2,3) and A3(1, 3,2), but they are related by reflection

and cyclicity). As polarization vectors we choose (with the same shorthand notation as above)
€(1,2), €(2,1) €(3,1), (H.242)

where again €(i, j)p; = €(i,j)p; = 0. For (— + +), we have further

€€ = B2

Let us compute the Feynman diagrams using the colour-ordered Feynman rules. From the

gggH-vertex, we see immediately that

Figure H.6: A, diagram.

0 0 0 1 _
01 = P2t + 2 = D)t (5 = P st LT 0

(H.244)

iA(—++) =

- S
. .
2
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Figure H.7: A, diagram.

iAy(—++) :i(p:s (p1+p2)g, — P5(P1+ D2)u )812

e ot
(gﬂlyﬁ + gNQVQMl,l g/LlVQp'fLZ) 6(1“21 2“]_2)6( H3)

—0. (H.245)

Figure H.8: A, diagram.

{ 4 —
A=+ +) :z'<p1 - (p2 +p3)d, — V1 (P2 +p3)”1>823

+
(g‘uws Jv + Guaw2P3p2 — guzv2p2u3> (1”21)6(2M12)623M13)

=0. (H.246)
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3

Figure H.9: A, diagram.

0 0 —
iAg(—++) =z'(p2 (pr Pl — PSR i)

(%ﬁsm p1 +9u1u2]”‘1u5 9#3V2p3ﬂl) (1H21) ZFM)G?;%
:ngw& 5 158) (= oty 1) (P30
_iV2(17[3]27) <1‘|2|3‘><_ <2+|$|1+>)
si3 V2(12)  V/2(13) V2[21]
i (A37[32]¢d2y[23](23]¢31)
20131317 (12y(13)]21]
i [23]3

=SB (H.247)

So the sub-amplitude is

[23]*

As(=+4) = S el

(H.248)

i.e. it is a MHV-amplitude (note that it exists with three gluons and real momenta because

this is actually four-pt kinematics p; + pa + p3 = —pg)-

The case (+++) is more computationally involved, since we have e, e/ ) 7 0 and efy jyef; o) #

0. We will furthermore use the A,, Ay, A. and A, notation of the diagrams shown above.
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We have

A+ ++) = \;5 {(ﬁ?— D2) s Gpipe + (D2 — p3)u1g‘32u3 + (ps — Pll)mgmus}5?175)6575)6?;713)

=5 (aetin) el on) + (Paci) (i) (H:249)
iA(+++) = (p (1 +p2)g, — p%(%?Jr pz)m);i

X\;é <9u1u2 (pr — p2)v + 9u2u2%1 guprng) +1M21) guf)ezguls)

\;é l ((ps (p1 +p2))(—P2€(+3,1)) —(p3- (p1 — 292))(1726(+gz,1))>(€(+1,2)€(+2,1))

- - ;isimpg)(pgeg NPT (1.250)
iA(+++) =i (pl (P2 +p3)g,, — ]9‘1 P2+ D3)u )3_22

X \;5 <g‘3m (P2 — P3)v + Gpusv2D3p, — 9u2u2P2y3> €, 2)6#2)6&#13)

5 +p3>>(<pgea Do) — ol (o)) (H25)
iAg(++ +) :’i(pz - (p1 +p3)g,, — Py ]9‘1 + P3)u )8_12

7

7 <g,u3#1( —pw) + 9#11/2}9‘1;13 gusy2p3#1> ?_M)EEHIQ)Q_#S)
)

\/—

L {(( (o1 +3))((ps = p1) - €ory) — (03 = 1) - P2) (P3€a.0)) (€ 2 €51y
+ 2(pacth ) (Pactiay) (Pacty)
(

1 2
\/—1((P1p2)(p3€(+2,1))(6€r1,2)€(+3,1)) + p2€é 1))(2936(1 2))(1’35(2 1))) (H.252)
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We collect the four contributions,

. i 513
iAs(+++) :ﬁ {(_p2€?§,1))(6(+1,2)6zr2,1)) + (p3€€r2,1))<€(+1,2)6?§,1)) - 8712(])26?3,,1))(6?1,2)6?2,1))
512 + S13
+ 8723((}736?5,1))(6;,2)6@,1)) - (p2€?§,1))(€(+1,2)€zr2,1)))
S12, 0+ + 2 + + +
+ ;3(1936(2,1))(‘5(1,2)5(3,1)) + 813(P2€(3,1))(p3€(1,2))(p3€(2,1))}
o 513, S12 1 S13 n T
=/ { - <1 + 51 + 523> (P2€(3.1)) (€(1.2)€(2.1))
S12 + 813 | S12 2
+ (1 + e + 313> (p355,1))(6a2)€z§,1)) + 813(p2€€§,1))(P3€(+1,2))(p365,1))}
‘ (12 + s13) (812 + 823) 4 L4
_ﬁ { - S12503 (P26(3,1))(€(172)6(2,1))
(512 + s13) (813 + 823) , I 2 n n n
+ 1359 (P3€(2,1))(€(1,2)5(3,1)) + 313(p25(3,1))(p3€(1,2))(P3€(2,1))} .
(H.253)
In order to write them in bracket notation we use
(2R3 oeme (P .
= = — 254
(p2€(3,1))<€(1,2)6(2,1)) \/§<13> <21>/</127 \/§<13> ) ( )
32] 24)(31] _ [13][23]
e € ey = el = , H.255
(p3 (2,1))( (1,2) (3,1)) \/§<l2> %M \/5(12> ( )
23] (23)[31] (A3][32] _ s [13][23]
U ] _ , H.256
(p2 (3,1))(p3 (1,2))(293 (2,1)) \/§/</1/3,7 \/§<21> \/§<12> 2\/§ <12> ( )
and the partial amplitude is
iAs(+++)
_ L {(812 + s513)(S12 + S23) [12][23] " (s12 + s13) (813 + S23) [13][23] n i So3 [13] [23]}
V2 512523 V2(13) 513523 V2(12)  s132v2 (12)
_ £(812 + 513)(S12 + S23) + (512 + 513) (513 + Sa23) + 533
2 (12)(23)(13)
_ i (s12 + 513 + 523)°
2 (12)(23)(13)
» 4
i my
S e — H.257
2 (12)(23)(31) ( )
where we used (s12 + $13 + 823) = (p1 + p2 + p3)? = m%.
To summarize, the amplitudes are
iMy(— ++) = — o paant 230 (H.258)
3 ~3m? 2 12)[23][31] '
~ 4
o i m
M. = ——gFmen(— ) H.259
M+ 4 4) =509 (=) i3y 3y 31y (H.259)
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with Fabe = /2 fabe,

. Compute the squared amplitude for gg — Hg.

Solution. In order to square the amplitude we use
fee ot = No* = Fo P = 2N(N7 = 1), (H.260)

to obtain

C

as \2N.(N?-1 s
My 4 )P = () Ml 2l o

3mv 2 512523513
203 g4
= S N(N?-—1)—2 H.261
97?2 (N >812823813 7 ( )
203 ms
M. 2= =S N(N?2—-1)—H H.262
|M3(+ + +)] Or? (V2 >512323313 ( )

| M3(+ — +)|* and | M3(+ + —)|* are obtained by permuting the labels 1,2,3. And by parity we

have
| My(— — =)= |[M3(+ + +)|? |My(+ — =)= | Ma(— + +)[*. (H.263)

So finally, the squared amplitude, averaged over the initial state helicities and colour, is

8 4 4 4
My + S1a + Si3 + So3

——2 1 1 403
M;(1,2,3)] = S N, (N? -1
‘ 3( >’ 2(]\702 — 1) 2(N02 — 1) 92 ( ¢ ) 512523513
— az’ NC m% + 81112 + 34113 + 8%3 (H 264)
9mv2 (N2 — 1) 512523513 . '

. Show how the amplitude factorizes in the soft limit, p; — 0, and in the collinear limit, (p;-p3) =

0, and compute the eikonal factors and the splitting amplitudes.

Solution. For the soft limit p; — 0, we use the amplitudes,
As(172+3%) = S my (H.265)
2 (12)(23)(31)’
2 23]
An(2rgty = — " 23] H.266

Note that we can write

As(1H234) = 227;31)28(3+, 1+, 24, (H.267)
with
S(3*,1+,2%) = <3S22> (H.268)
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As py — 0,

(p2 +p3) = —pur = m¥ = s93 = (23)[32], (H.269)
S0
2
~ foraty _ ME(23)B2] 0 b ot
plllgloAg(l 2737) = 2(23)2 S(37,17,27)
= Ay(2737)5(3*", 17, 27), (H.270)

which is the expected factorisation of the soft gluon 1. By parity, we obtain the amplitudes,

A3(1+2_3_) = —<2—3>4 (H.271)
2(12)(23)(31)’
2
Caey My (23)
Ay(2737) = > —[23] , (H.272)
and we can write
2 2
A3(1+2_3_) = < ? S(37, 1+,2_), (H.273)
with S(37,17,27) = S(3*,1%,2") and
2
. +77__mH<23> — 44+ o—
plllgloAg(l 2737) = 2 13 S(37,17,27)
= A2(2737)5(37, 1t 27), (H.274)

i. e. the eikonal factor S(3,17,2) does not depend on the helicities of gluon 2 and 3.
In fact, it coincides with the eikonal factor of a positive-helicity soft gluon out of a quark line,
we computed in the soft limit of ete™ — ¢gg. As we anticipated there, the eikonal factor does

not depend on the spin or on the parton flavour of the emitters (in this case 2 and 3).

Using
A3(17273%) = ;[12][[22%3]][31@ , (H.275)
and A(273") we get easily that
S(3,17,2) = — [3[13”21]2] , (H.276)

in agreement with the eikonal factor of a negative-helicity soft gluon out of a quark line.

In the collinear limit p;p3 — 0, we parametrise,

p3 = zP m=(1-2)P, (H.277)
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then p1 +pa +p3 = pa + P = —py = m3; = sap.

T 1t

2t 3t

Figure H.10: lim A(172737).

p1p3—0

4
1 My

i, AT2ST) = = e P 2P B1)

1 m
2(1 — 2)(31) 2(2P)?
1 m3 [ P2]
2(1— 2)(31) 2(2P)
— Split_(371+)A4,(2* PT), (H.278)

with X
Split_(3*17) = STESIE . (H.279)

The second case to consider is

Figure H.11: lim A(172737).

. s . 23)4
Jm A237) = (- 2<12§<2:>),><31>)
B 22 (2P)3
o 2(1 — 2)(31) 2(P2)
_ 2? (2P)?
/(1= 2)(31) 2
— Split, (3717)Ax(27P7), (H.280)
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with
2

2(1—2)(31)°

Split, (371%) =

and

. my; (2P) _ (2P)?
AP =5 2P] 2

The third case is

Figure H.12: lim A(172737).

p1p3—0

. —9—a+) _ (1_’2)2 <P2>3
pllzggOA(l 2737 = 2(1 — 2)(31) 2(2P)
(1-2)?* (2P)?
2(1—2)(31) 2

= Split, (3717)Ay(27P7),

with | )
Split, (3717) = -2
z(1 — z)(31)
Note that
H\ 1t
T
2- 3+

Figure H.13: lim A(172737).

p1p3—0
13)4
piim A(172737) mé?io( 2(12><23)<31>> ’
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Split, (371%) = 0. (H.286)

The four independent splitting amplitudes of the g — gg splitting are

1
Split_(3+1+) =
z(1—2)(31)
+ a
Split, (3717) =
plit, (3717 = =
1 — 2
Split, (3¥17) = (1-2)
v z(1—2)(31)
Split, (3717) =0
The other four can be obtained by parity, e.g.
H 1~
+ —
P 3t

Figure H.14: lim A3(17273%).

pip3—

, oty 22 [2P]3
pllz%gr,goA?’(l 2737) = 2(1— 2)[31] 2[P2]]
B 22 [2P)?
(1= 2)31] 2
— Split_(3717)A,[2* P*], (H.287)
with )
Split_(3+17) = ~i—aa (H.288)

which is the parity conjugate of Split, (371%). Likewise the others can be obtained.
Note that

1+z2t+(1—2)*
z2(1—2)

:2( © +1_Z+z(1—z)>, (H.289)

Split_ (3717)|2+|Split, (3711)[*+|Split_ (3717)|* o

1—2 z

which is the z behaviour of the DGLAP g — gg splitting function.
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H.26 Af*°(17,27,3") from the three-gluon vertex

In sec. 1.12, we said that for [ij] = 0 and s;; = 0 but (ij) # 0 with 4,j = 1,2, 3,

(12)°

iAYe (17,27,3%) = z‘m :

(H.290)

From the colour-ordered three-gluon vertex, show that up to a sign you get indeed A (17,27,3T)

and check that it is gauge invariant.

Hint  Using momentum conservation, ps3 = —(p; + p2), the three-gluon vertex is
V3(p1,p2) = %[229519“2“3 — 2py2ghhe + g2 (py — po)*el.
Solution.  In order to check gauge invariance, it is enough to use €, (ps,q3) and e_(p;, ),

© = 1,2, with arbitrary ¢, ¢2, q3. So

o ):<q3‘\v“l3> . '>:_<qf " 1)
+\P3,43 \/§<q33> ) —\Di; qi 7\@[%2]

Using the three-gluon vertex above, we get

(H.291)

iAs (1_72_>3+) - \;5{2 (p2 - €~ (p1,q1)) (€-(P2; G2) - €4(P3,q3)) — 2 (P1 - €~ (P2, q2)) (e~ (p1,01) - €4(P3,43))
+ (e~ (p1, @) - €~ (2, @2)) ((p1 — p2) - €1 (3, CB))}
1 1
= Zmp (—[@12](21)) 2(g32)[q23] — 2 (—[g21](12)) 2(g31)[q13]
0 0
2021 ] (fas) BT~ (2251
_ T 1a12](21)(g52) [923] + [a21](12) (g5 1) [a3]
[@11][422]{g33)
© [913]]g23]((31){a52) + (23) {g31))
[11][922]{g33)
@, [03][03]{g:3)(21)
[11][g22]{g53)
@3 (12)3
= i (H.292)
where we used momentum conservation [¢12](21) = —[¢:3](31) and [¢21](12) = —[g23](32) in (1),

Schouten identity in (2) and again momentum conservation [g23](31) = —[¢22](21) and [¢;3](32) =
—[@11](12) in (3). Up to a sign (which depends on the ordering of the three gluons in the vertex), we

obtain the desired result.
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H.27 Colour decompositions and BCJ relations

(a) Consider the four-gluon tree amplitude. Using the BCJ relation and the multi-peripheral colour

decomposition,
MO, 4) =¢* Y (FrFs), ALY (1,09, 05,4) (H.293)

gES2

write the colour decomposition of the four-gluon amplitude in terms of the colour-ordered amplitude
AP(1,2,3,4).
Solution.  Using the BCJ relation we find

AD(1,3,2,4) = 22401, 2,3,4).
S13

The multi-peripheral colour decomposition becomes

MO (1,2,3,4) = 2 |(F2F%), ,, + “2(Foape), | A0 (1234). (H.294)
S13

(b) Consider the five-gluon tree amplitude. Using the BCJ relations,

_81234514gree (]-a 27 37 47 5) + S14 (824 + 325) Agree (]-a 47 37 27 5)

AT (1,3,4,2,5) = (H.295)
513524
A (1,2,4,3,5) = 28T (14,8 2.5) ¥ o0 (912 900) AT (1,2,3,1.5) (H.296)
824535
— At (1,2,3,4 Abree (1,4,3,2
A (1,4,2,3,5) = 2o diT (123, 4 5) % o (u o) 457 (1,4,3,2.5) (H.297)
835524
— APree (1,4,3,2,5 APee (1,2,3,4,5
Agree (17372’4’5): 51452545 ( ) Xy Dy &y )+812 (324+845) 5 ( ) &y Iy Ty ) (H298)
S$13524
and the multi-peripheral colour decomposition,
MPO1,....5) = ¢* 3 (F Foms oos), AV (1,09, 03,04, 5) (H.299)

oES3

write the colour decomposition of the five-gluon amplitudes Ago)(l, 2,3,4,5), Aéo)(l, 3,2,4,5).
Hint  Use repeatedly momentum conservation.

Solution.  We consider the multi-peripheral colour decomposition of the five-gluon tree ampli-
tude for the scattering psp; — papsps, which displays 3! colour-ordered amplitudes. Using the BCJ
relations of eqs. (H.295) - (H.298), we can write the colour-ordered amplitudes A(12435), A(13425),
A(14235) and A(14325) as functions of A(12345) and A(13245),

M (1,...,5) = g* [craans AS (12345) + casois AY (13245)] (H.300)

where the coefficients cj9345 and cy3245 are each expressed as a combination of (n — 3)!(n — 3) + 1
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colour structures, in this case five colour structures,

ww@}?auﬂa’) + SE(F“SFC“‘F“?)
aias aias

C12345 = (Fa2Fa3Fa4)a1as +
535 525

. %(FMFGQF%)aI% + M(F‘MF“?’F“?)M% , (HSOl)
514535 514525

and

12 598 oy pas pazy  S13( poa pas pras)
ajas ajas

S25 535

. M(F(MFthaz)alaS + M(F"Mﬁ’a?[7(13)(11(15 . (H302)
514595 514535

C13245 = = (Fa3Fa2Fa4)a1as +

Note that cy3945 is obtained from cq9345 by swapping the colour and kinematic labels of gluons 2 and

3.

H.28 Proof of the Parke-Taylor formula for j = 2 using
BCFW

For the MHV n-point sub-amplitude A,,(17,...,57,...,(n—1)",n~) with the negative-helicity gluons
j and n, using on-shell recursion relation we have proven in the lecture the Parke-Taylor formula for
7> 2.
Prove it for j = 2.

Hint For the shift,

we have shown in the lecture that the on-shell recursion relation is reduced to the k = 2 case, which

for j =2 is
iA,(17,27, . (n =1t n7) =iAs(1T, 27, —P‘h)})izzzAn_l(Ph,3+, . (n—=1%7a7).  (H.303)
Solution. For A,,_; not to vanish, h must be negative,
iA, (17,27, . (n— 1)t n7) =iAs(1t, 27, —ﬁ+)]{22mn_1(15—,3+, o (n=D% A7), (H.304)
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with

iAs(17,27,—PF) = —i— [1?]4 —
(122~ P~ P)1]
P (HL.305)
[12][2P][P1]
and
iAn (P35, (= 1)) =i (Pr)? . (H.306)

(P3)...((n— L)n)(nP)

A

with 1] = 1] and A) = n) since they are not shifted, and where we analytically continued [k(—P)] =
i[kP]. So

A Ve — g P 1 (Pn)*
A1 27 s (= 1)) [12]27][P1] (12)[21] (P3) ... ((n — 1)n)
o (n2)*[21]
(34) .. ((n — 1)n)(12)[21][12](23)[21](n1)[21]
(n2)*

(H.307)

=1

(12) ... {(n — )n)(nl)
where in (1) we used (kP)[Pm] = (k™| P + z¢ |m™) together with (n~[¢ = ¢ |17) = 0 on the same

coloured pairs.

H.29 NMHYV helicity structures

Six-gluon amplitudes display also NMHV amplitudes: the ones with three negative-helicity and three

positive-helicity gluons. Up to cyclicity and reflection, there are three different helicity structures,
(+++——), (++—+-), (+—+—+-).

Using the photon decoupling identity, show that you can write the last one in terms of the first two.

Solution. For the third helicity structure, the photon decoupling identity on gluon 1 is

A(17273Y475767) + A(173747516727) + A(11475767273%)
FA(IT567273T47) + A(1T672731475T) = 0. (H.308)

We can use cyclicity on the third term and rewrite it as A(371747576727). On the last two terms

we use cyclicity and reflection and rewrite them as

A(5T1473%2767) + A(1757473%2767), (H.309)
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thus A(172737475%767) is rewritten in terms of four (+ + — + ——) helicity structures.

H.30 The As(+ + — + ——) NMHYV amplitude

Using the on-shell recursion relation, compute the six-gluon amplitude Ag(172737475767).

1. Using the shift,

M=AbA A=A
A (H.310)
)\6:)\6 )\6:>\6_Z)\1-
Solution. The on-shell recursion relation is
iAg(172737475767)
4 .
. . Sy b > Al
= 3" > A (11,20, k=P P—QZAG_M (Pl k+1,...,67). (H.311)
h=+ k=2 1k
We have three cases:
iAs (17,27, —Pr,)) =i-iAs (P, 37,47,57,67) h=+
k=2:1,= s 12) s (P ) (H.312)
0 h = — Aj vanishes,
; 1+ 9+ 9— _p—\ _i ; D+ 4+ F— (- —
fl3iL iAy (10, 2%,37, = P3) prids (P,4%,57,67) h=+
0 h = — both A4 vanish,
(H.313)
iAs (1F,27,37,47, —P,) iy (P, 57,67) h=+
k=4:1, = 5 ( L) 7l (P ) (H.314)
0 h = — Ajs vanishes,
where I, and I, are related by parity,
1) < |67) 2) < [57) [37) < ]47)
[4%) & [37) 5) < [27) 67) < |17) . (H.315)
Let us now consider the case k = 2. For k = 2, the pole is at
512 <12>
P == H.316
T P 62 (H310)
and thus
S 0] 6+) (1 (H.317)
9 5 <62> )
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and ’1:> =]17) and '6_> =167)+ = ‘1’>. We use the identities computed in eqs. (1.417)

and (1.419),

(6P12)[Prok] = (67| Pra|k™)

(27p, +ps157)
(62) 7

(6P12)[P126] = s612 = 345 -

[56] =

Also, we use the known three particle amplitude,

A (i-‘r 2+ _p ) — [12]3 _ [12]3
) T B~ Pu)l] 2P [Pal]

where [(—Pio)k] = i[(Pi2)k]. Putting everything together we obtain

(2P i [Pr,4]!
2P| [Pal] 512 [Pra3][34][45][56][6 Pra]
2P i, [Pro4]* (6Py5)*

[2P][Pa1] s12° [P123][34])[45][56][6Pra]  (6P15)*
= M3 1 (67| Pra]4)"

2 =1

(PNSHIA AT (6, 13-y paias) L2,

(67| P1s |4_>4
(61)(12)[34][45]s5345 (67| P12137) (27| Pe1 [57)

=1

and by parity we get k =4,

<3_|P56|1_>4 _
23)(34)[56][61] 5234 (47| Psg [17) (27| P [57)

I4Zi
{

For the case k£ = 3 we have

[12]? i . (56)3
[23][3Pys)[Prs1] 5123 (Pi34)(45)(6.P;3)

with Pig = Pis + 2]67) (17, and we use

(6.P13)[Pr33] = <6_‘ Py ‘3_> ;
(4Py3)[Prsl] = (47| Pos|17) -

We see that we will not need the value of z. So

[12]°(56)°
[23](45) 5123 (67| P12 [37) (47 Pos 1)

Is = —1

229

(H.318)
(H.319)

(H.320)

(H.321)

(H.322)

(H.323)

(H.324)

(H.325)
(H.326)

(H.327)



Summing eqs. (H.322), (H.323) and (H.327) we obtain Ag(172737475767).

. Using the shift [42]

{5\4 = /\4 + Z>\3 j\4 = :\4 (H 328)

5\3:)\3 3\3:5\3—2’;\4

Hint By cyclicity, it is convenient to take gluon 4 as the first gluon. Then the on-shell
relation is
1

1
ids (4,5,6,1,2,3) = Y S iAo (4,5,.. .k, —Prl') 55iAe_ea (Pl k+1,....,3)
h== k=5

(H.329)
where 5 < k <1 (mod 6).
Solution. k takes again three values,
k:5 I = idAs(dt, 57, —Pgh)——iAs(Pl, 67,17, 27,87), (H.330)
h== 45
k6 Io =Y iAy(At,57,67, — Py ——iAy(Pl, 1%, 2%, 37) | (H.331)
h—t 5456
kol L= iAs(At,57,67, 17, — Pt ——iAs (Pl 2,87), (H.332)
h=+ 523
where [ is only non-vanishing for h = — and I5 and I; are related by parity,
1) |67 2%) & |57 37) < |47)
[4%) « [37) 5) < [27) 6%) < [17) . (H.333)

Let us now look at the case k = 5 with A = +. The three-point amplitude is only non-vanishing,
if all the square brackets vanish, [5P] = [45] = [P4] = 0. However, with our deformation, we
have [45] = [45] # 0. Thus all the angle-brackets have to vanish and the three-point amplitude

for h = + vanishes. This leaves us with

Iy = iAy(A+, 5, —Pg)simg)(%, 6-,17,2%,37) (H.334)
45
where the pole is at
P P (45)
L _ B9 H.335
T T aPag) 1 Psl) () (H.335)
45
= Py =Py — 2355 [3%) (47 (H.336)
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We will use the identities,

23] = (23] + g = BT Puul2D).

(35) (35)
<3]545>[]545k;] = <3_‘ Pus ‘k_> ; (H.337)
(3Ps5)[P153] = (3Py5)[Pas3] +é§?y‘35ﬂ54] = S345 ,
which gives
[P K [12]?
> 45][5Pm) a5 [Pas6][61][23][3P)
PP i, [12]3 (3P5)3
- [45] [5P45] S45 [15456] [61][23] [3]545] (3]545>3
_ (35)?[54]"[12? 1
%[61](45)%{3@%% (37] Pas 67) 5345
_i (35)"[12]" (H.338)

(34)(45)[61] 5345 (37| Pz [67) (57 Py 2-)"

and by parity,

56)3[24]*
I =i (56)°[24] . (H.339)
(61)(23](34] 5234 (17| Pos [47) (57| Psa [27)
What is left, is the case k = 6 for which we have
Pig = Pus+ 2 37) (47, (H.340)

and we will use the identities,

(3P)[P6] = <3_‘ P ‘6_> ) (H.341)

to obtain

3
(
3P)3  (3P)[P4]
[45][56][6P] 5156 (P1)(12)(23) (3P)[P4]

=1

(12)(23)[45][56]s123 (3~ | Py |6—) (1] Pss 4-) (H.342)
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To summarise our computation: For the |67, 17) shift we found

oo gy (67| Pro|47)"
Aol 2 6 = 1) B[]y (6| Pra 3) @ | Por 5
. (371 #ss]1)
<23><34> [56] [61]3234 <4_| PSG |1_> <2_| PGI |5_>
[12]3(56)°

" @)1z (6| oo 13) (- P 1) (H:549)
whereas for the |37,47) we have
rorn e (56)°[24)
A2 0 G BT saan (1| P [ 1) (51 Pos27)
. (35)"12]
(34)(45)[61]s345 (3| P45 67) (57| P34 127)
+ <3_| P56 |4_>4 (H344)

(12)(23)[45][56]5125 (37| Pz |67) (17| Psg [47)

Comparing the corresponding three-particle poles, we see that the spurious singularities are in
different locations. So when in a numerical evaluation a spurious term is small in a certain
region of phase space, it may be convenient in that region to evaluate the amplitude using a
different shift. Keep in mind however, that spurious poles become an issue “only” for finite
numerical precision in which the cancellation of large numbers introduces numerical instabilities.
An evaluation with exact arithmetic would show that the amplitude is finite in these points
and therefore the singularities are spurious. In practice, one will never use exact arithmetic but

floating point evaluations and spurious singularities have to be avoided.

H.31 The A¢(+ — + — +—) NMHV amplitude

Although the amplitude Ag(172737475767) can be re-written in terms of (+ + — + ——) helicity

structures (see app. H.29), in order to display the singularity structure it is more convenient to work

it out directly through the on-shell recursion relation. Use the shift [42],

5\3:>\3+Z)\2 3\3:5\3

. s (H.345)
)\2:>\2 )\2:/\2—2’/\3

Hint By cyclicity, take 3 as the first gluon.
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Solution. The on-shell recursion relation is

idg (17,27,3%,47,57,67)
6
Z ka V(BT A Lk —B) = 52 i s (Pk+1,...,17,27) . (H.346)
h==+ k=4 3,k
and k takes 3 values,
k4 L= iAs(3%,47, —ngh)im5(153’g,5+,6—, 1%,27), (H.347)
h=+
k:5 Is = iA,(3%,47,5%, —ng)s iA (P, 67,1%,27), (H.348)
345
k6 Io= S iAs(3%,47,5%,67, —Pi,;jh)simg(ﬁ;(ﬁ, 1+,97), (H.349)
h=+ 12
where 14 and I4 are related by parity,
37) & 27) 1) & ]47) 5) < [67)
37) 27 [17) 47 57) < [67) . (H.350)

Let us now consider the case & = 4 and the helicity A = +. The discussion is completely analogous

to the previous exercise: we see that [34] = [34] # 0 and therefore the amplitude has to vanish and
we need consider only h = —. The pole is at
P? 34
Z = — 3 __(34) (H.351)

271§, 137)  (24)

and we have

Py =P — 234) [2%) (3*]

24)
) =27) + gji 37) 37) =37) . (H.352)
For the computation we will use the identities,
5 (34) (47| Pys[17)
[12] = [12] + @[13] Ty
(2P)[Pk] = <27‘ Py ‘ki (H.353)
PP = (2P)P2) + () 2P)(P3] = s
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and obtain

P3P, [15]*
YT B[P s [P5][56][61][12] 2P

P3P i, [15]4 (2P)3

" B[] s [P5)[56][61][12]2P] (2P)?

. (24" 43715)" 1
%[56] [61]<34>%<23>M<4’\€i§|1’> <27| l’b34 |57> S934

. (24)*[15]*

= 23 OO0 s (2| Por [5) (4| P 1) (H.354)

By parity we get k = 6,

o [13]4(46)*

o = 8103 (56 (6| Pra 13 (4| Py 1) (H.355)

For the case £k = 5 we have

1635:P35+Z5’2+> <3+‘ )

(H.356)
and we need the identities,
P)(PH = (27| Py i)
(kP)[P3] = <k7‘ Pss ‘37> (H.357)
and we will not need the value of z to obtain
o [35]* T (26)4
= ' [34][45][5P)[P3] 5315 (P6)(61)(12)(2P)
. (26)1[35]*
(2B Wssss 27| P 5 (61 P 3) (1:55%)
The amplitude is then
e 21)1[15"
Ao (102 8B 6 = o BT 6 sass (2| Pon ) (4] P 1)
N [13]*(46)*
[12][23](45) (56) 5123 (6~ | P12 [37) (47| Pos [17)
(26)[35]*
OB e 2 P 5 61 Py )
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H.32 Four spin-s boson amplitude

Consider a self-interacting massless particle of integer spin s whose three-particle amplitudes are

given by (stripped off couplings)

My(17,27 8%) = i <<2<31>2<>31>) 2050 =i (L2

Ms(17,2%,3%) =0 Ms(17,27,37) =0. (H.360)

Using the on-shell recursion relations, compute the amplitude My(17,27,3%7 47),

1. using the shift

5\1:)\1‘1'2’)\4 3\1:5\1

s L. d =AM (H.361)
M= M —2M A=\
Hint The amplitude is unordered, so it has two contributions,
2~ 37 3t 2”
> <
1t Y 4~
Solution. Using the shift [47,17) there are two contributions,

MM = ST iM(1F, 27, — P S’mng(P{g, 3*,47)
h=4

@

I
LMy (P, 27,47), (H.362)

+iMy(17, 3%, —Ppy)
513

@

Ip)

where we used in the second term that Ms(1%,2%,3%) = 0. Since 1 and 4 must be on opposite

sides of the shifted propagator, only si5 and s;3 can go on-shell,

. . T3t —P=)=i(—1)° 13 S
@_ iM3(17, 37, —Pr3) =i(—1) <[3<_131’3)H(_P173)1]>

oy
_Z<[3151,3][P1,31]> ’ (H.363)
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SO

(s N ewt Y
b= ([3151,3][161,31]) 513 <<4p1,3><131,32>> . (H.364)
We have
Pry=p, +p,+2[4%) (17, (H.365)
(4P 3)[ Py 53] = (41)[13],
(2P, 5)[Pr.31] = (23)[31], (H.366)
and we get

L i eynsp )
2T sy \ (d1)[18F7(32)

_(24fspy” ( (24) )
S13 (14)(23)[13]
24)*[13]%)°

(use: (23)[31] = —(24)[41] ) = —z(< - (s14)7°. (H.367)
To evaluate I; we start with @ for the case h = +
iMs(17,27,—P,) = (Z A<(_p1’221> ) , (H.368)
’ (12)(2(=P12))

which is only non-vanishing if [12] = [2(=P,5)] = [(—P1.2)1] = 0. But we have [12] = [12] # 0

which means Ms(1*, 2~ —]5[2) has to vanish. So we are left with

I = iMy(i*, 2, —Pf2)SL¢M3(P1j2, 3+,47)
12

with (12) = (2P) = (P1) = [P3] = [34] = [4P] = 0. Since

Pio=n TP, T2 ‘4+> <1+‘ ; (H.370)
we have
(kPyo)[Pro1] = (k2)[21], k=34,
(4P 5)[P2] = (41)[12]. (H.371)
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Multiplying and dividing I; by (4?172)[1&12 1] yields

(use: [12)(24) = —[13](34)) = —; (&g;?&)
( same steps as for Ip) = —i(<24>(:1[213]2)8(314)5. (H.372)

Putting everything together, we have

M =i+ =) 07137 ()
B i318218413 [<24>2[13]2r (314)_8

— i L [ay[131)" (s10) . (H.373)

512513514

2. using the shift

A o=\ 4 2) izS\ .
{Al R D V¢ (H.374)

5\2:5\2—25\1 5\2:)\2

and compare with the previous computation.

Hint In order to use it as a |—, +)-shift, write the amplitude as My(1,4,3,2). Also here

there are two contributions,

it i 3"
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Solution. We use the shift |27, 17), and by reflection we write the amplitude as My(1,4, 3, 2).

MYt 27,30 47) =MV (1T, 47, 3%, 27)
= S iMy(It, 47, POy My (Pl 37, 2)

h=+ S14

_ ®

I

+ My (1, 3%, —Pp,) —iMy(Py,47,27), (H.375)

513

Ip)

which can be obtained from Z'Mf"l)(lﬂ 27,3%,4™7) by swapping labels 2 and 4. So

1 s
iMPY (27,37 47) =i [(24)2[13]%]° (s12) "2, (H.376)
812513514
thus
A r(41) (14 0= 9+ 44— 2—s
1M 17,27,37,4 s
: ‘tm< ) _ <14) : (H.377)
M, (1+,27,31,47) 512

and the two evaluations of iMy(17,27,3",47) may agree only if s = 2.

H.33 Interactions of spin-1 and spin-s massless particles

We want to determine what sorts of self-consistent interactions spin s massless particles (h = +s),

that we denote by ¢, can have with massless spin 1 particles, that we denote by ~ [33].

2

1

Figure H.15: 3 point interaction pp~y. The plain lines represent particle ¢ and the other type of line
represents particle 7.

1. Consider the three-point amplitude M3(17?, 2$, 3;) in fig. H.15. List the corresponding helicities

hi, ho, hs. Derive the little group scaling of M3 and show that

M3(1,5,27,33) ~ (12)1725(23)1725(31) .

p Ty Y
Ms(1,°,2%,33) ~ [12]' (23] F2%[31] ! (H.378)
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Solution. In sec. 1.12.1, we have established that on-shell three-point amplitudes with
massless particles can only depend on either right-handed or left-handed spinor products. In
sec. 1.12.3, we have seen that in a generic theory little group scaling and the correct physical
behaviour for real momenta imply that the three-point amplitude is made of right-handed
(left-handed) spinor products if the sum of the helicities is negative (positive), eqs. (1.341) and
(1.342),

MI o (12)~Mheths (13) =M ~hatha 93y ~ha=hathiQ(_py — hy — hy),
Mg} oc [12]MHha=ha[pg)hatha=hn g1 ths=ha@)(hy 4 hy + hy),

where the only case which is excluded is hy + hy + hg = 0.
Then setting hy = s, hy = +1, hy = —s, we obtain straightforwardly eq. (H.378).

. Consider the four-point amplitude M,(17,27,37,47). List all the possible diagrams built with
the three-point interaction (H.378). Write down the BCFW on-shell recursion relation and

compute My(17,2F,37,47).

Solution.  We have the following contributions

- +
2+ 3 3~ 2

+ (H.379)
1~ 4+ 1~ 4+

that we will denote respectively by the s-channel and the u-channel in the following. By little
group scaling we expect that the amplitude scales as [1)*[3), [4]*®, |2]°. First, we document
the result using the channel cuts and then the on-shell recursion relations. The s-channel cut

yields
_i[12]1—25[2p]1+25 Z Z<(—P)3 1+2s<34>1—25

- i )
L= s (ACh)

(H.380)

where P = —(p; + p2). By analytic continuation ((—P)q) = (Pgq). Further,

[2P](P3) = [24](43),
[P1]{(4P) = [31](43) .

Then, by momentum conservation
24[(43
(13)
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s '

([24]<13>)2s(_1)25 Plp. 5"~

S12 —3513

(o azyy= 2B

S12 513

Is = (_1)

— (el (H.381)

The u-channel cut yields

. _i<13>1+2s<3p>1—251_Z'[(_P)2]1—2s[24]1+25
e (H.382)

where P = —(p; + p3). We use

2P](P3) = [24]{43) ,
(1P)[P4] = (13)[43].

and get

S;<[24}<13>>1+25%

(ajqzy= 0

513 512

s '

= —(-1) (H.383)

where we multiplied and divided by [24](43). I, agrees with I, up to a factor (—1)%.

Next, we look at the on-shell recursion relations. Consider a shift on the spin-1 particles. The
shift is

Ao = Ao + 2\ 3\:5\ -
{? R B VO (H.384)

5\3:5\3—25\2 5\3:)\3

The BCFW recursion relation has two contributions, the $—channel and the #—channel. For

the first one, the two subamplitudes read

—Z[lé] 1-2s [ép\] 14+2s
[P1]

M;(1,,25,Pf) = ,

evaluated at (12) = (2P) = (P1) = 0, and

~_ A

My a7) = SR

evaluated at [34] = [4P] = [P3] = 0, with P = py + ps — 2¢. The pole is at

512

21p, 13)

z2=—

(H.385)
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Then

g, — iR (P33 H356)
P s2 (D)

34)[42]

=
(4P)[P1] = (43)[31] — 2(43)[21]
=

_s12[12)(34)
2p, 13)
_[13](34) (31)[12] 4 512[12](34)
2[p, 13)
_ (s13 + s12)[12](34)
[12](31)

(34)

314<173>

] -
13](34) —

7

The §—channel amplitude becomes

()™ 21y, 3"

ily = —(—1)55([24]@3))25 - (H.387)
The @-channel amplitude yields
i, = i<1g>1+2sA<gp>172si —z[( P)2]1 2s [24]1+2 (H_388)
(P1) 513 [4(=P)]
with P = P2 + Py + 2q, and
z=— BO2 (H.389)
Further, similarly to before,
(3P)[P2] = (34)[42]
S pal_ (S13 T+ s12)[24](12)
(LP)[P4] = - [12](31)
_ . 24)
= 514@
Hence, we find
et 2P 137 (13)24]12
o = (1) 3 = s 2l24]
_ s 7’ 2s [2|p4|3>272s
= (—1)°—([24)(13))* ———— (H.390)

513 S14
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If (—1)* =1, we sum the two contributions and get

Ma(1;.2§,3;,47) = T+ T = (1) (a)(03) P21, 197 (- + o)

P18y Oy T
S14 513 S12

_ <—1>55f<[24]<13>>25[2|¢4 7 ()

512513

= —(=1)° ([24)(13)) (2] p, ), (H.391)

512513

which is consistent with the cut-channel result.

H.34 Graviton MHYV amplitudes

Tree MHV graviton amplitudes can be obtained though on-shell recursion relations, and expressed as
the square of tree MHV gluon amplitudes. Let us consider the amplitude MEe¢(17,27,3% ... nt).
Show by induction that it takes the form [30],

n—1

iMree(1m,27,3 o nt )y =1 Y0 2p1 - pe, ([ Be) ((44(17,27, 07, .. ,a;)f, (H.392)
gESH_2 k=4
_ {oroin) *‘Pawk ) a,;> for n >4
with B = (20%11) (H.393)
1, for n=4

where P;; =p;+...+pj and A,(17,27,04,...,0,) is the colour-ordered MHV gluon amplitude.

1. Firstly, check that the form proposed above yields the known result for n = 4,

(12)712]
(13)(14)(23) (24)(34)?

M (17273747 = (H.394)
Solution.  For n = 4, the proposed form yields

iMyTe(17,27,3%,4%) = i[sa(iAs(17,27,37,47))% + 515(144(17, 27,47, 37))?]
(€ | T

7 _|_ 1> }

(23)2(34)2(41)7  (24)2(43)2(31)7

_Z.<12>6([14]<24>< 1) + [13](23)*(41))
(13)(14)(23)%(24)*(34)°

<12>64%7[13]( (24)(31) + (23)%(41))
(13)(14)(23)7(24)2(34)>
(12)7]13](34)

TI3)(14)(23) (24)2(34)?
(12)712]

- i<13><14><23><24><34>2 ’ (H.395)
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where in the fourth line we used momentum conservation (24)[41] = —(23)[31], in the fifth line
the Schouten identity, and then finally [13](34) = —[12](24).

. Next, assume that eq. (H.392) holds for (n — 1) gravitons and consider the shift,

5\1:>\1—Z/\2 /2\1:5\1
. ~ ~ . (H.396)
)\2:)\2—|—2)\1 )\2:)\2.

Eq. (H.396) is a |—, —) shift. It has been shown that under the shifts |—, =), |+, +), |—, +),
M(z) — 1/2* as z — 00, s0 |—, —) is a good shift [32].

Use the on-shell recursion relation for graviton amplitudes,
iM,(17,27,3", ....n")

n—1 .
= > > ZiMk(Q_,agr,...,an,Phk)P2 iMy—pio(— Pi,?,a,jﬂ,...,a:{,l_QH.397)
2k

0€Zp_2 h=% k=3

where the first sum is over the (n — 2) cyclic permutations on the helicity line (3*,...,n"),

considering that the graviton amplitudes are not coloured ordered (there is no colour in gravity).

Hint.  Since we want to write the graviton amplitudes as the square of gluon amplitudes, we

establish the analogous on-shell recursion relation for gluon amplitudes under the same shift,

iA, (17,27, 3+ .nt)
ZZZAk ot ;,P;k)PZQ iAo (—=Pol (K 1)%, .. 0t 17) (H.398)
h=+ 2,k

Solution.  For the gluon amplitudes we use the on-shell recursion relations (H.398). As we
have discussed in the proof of the Parke Taylor formula with BCFW, we can discard all the
terms with 4 < k£ < n — 2 by counting the negative helicities. We are left with the &£ = 3 and

k =n — 1 terms. For kK = 3, we have

= iAy(37, 3%, Bfy) A,y (—Bpy 4T 0t 1) (H.399)
k) 823 b
The 3-point amplitude, R
CAL(H— 2t pt ; [3P]3
ZA3(2 3 3 5 P2 3) = —1—= ~ 5 (H.400)
’ [23][P2]

can be non-vanishing only if
(3P) = (23) = (P2) =0, (H.401)

but (23) = (23) # 0, and this leads to [3P] = 23] = [P2] = 0 and thus A3(27, 3%, P5fy) = 0.

Thus, we are left with only one term, k =n — 1,

id,(17,27,3%, .. ont) =id, (27,37, ... (n— 1), P )szg( Pt

1,n
Snl

nt 17).  (H.402)
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Since the graviton amplitudes with all-like helicity gravitons, or all but one, vanish, the anal-
ogous analysis of the on-shell recursion relation of the MHV graviton amplitudes yields just
one term, for kK = n — 1, up to cyclic permutations, since the graviton amplitudes are not
colour-ordered,

g .

iM,(17,27,3%, .. on") = > iMu 1 (27,05, ..oy, PL) —iMs(=P, 0, 17).

0€ELn—2 Son

We may symmetrise over the (n — 3)! non-cyclic permutations, and write it as

iM,(17,27,3%, ... ,n")
1 . A_ 5 . A ~_
- (n3) > iM,a(27,07,. .. ,O'(—;_l), Pljgn)—zMg(—Pfan, or,17). (H.404)
‘0€Sp_2 Onl

Then, we use the ansatz for M,,_1,

iM,(17,27,3%, ... n")
1 n—2

= E; i > 2]51’Un-p0n1<k1_[45k>(i14n(§,U;,...,J:{l,fjl’an))Q
g n—2 0 n—3 =

Li(iAg(—Py, o, 1)), (H.405)

l,on? ¥ n>

lon

the sum over S,,_3 is redundant and may be cancelled with the symmetry factor (n —3)!. Then

we use the on-shell recursion for gluons (H.402),

~ A A

iAo (27,35, n = 1% P iAs(— Pl ot 1) = —isey - iAL(17,27,3%, ., nt), (H.406)

1,n»

so that
. n—2 9
iM,(17,27,3%, .o nt) =i >0 2P, pen 201 o ([ Be) ((4.(17,27,3%, ... ,n"))".
0ESH_2 k=4
(H.407)
We need to work out 2?17% “ Do,_,- Firstly, we need the value of z at the pole,
0="P2, = [lo,){o.1)
= [lo,)({onl) — 2(0n2)), (H.408)
which entails that (o,1)
o
=7 H.409
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2p170'n : pUn—l = 2p0n—1 : (]31 _I_ pUn)
- [10-n—1]<0'n—11> + [O-no-n—l]<0-n—10-n>

= [lo o — (onl)
- [1 n—l](( TL—11> <0n2>

<0n710n><12>

(00-12)) + [0000-1){0pn-100)

= [10n—1] + [Unan_1]<0n_10‘n>

(0n2)
_ <“<201“>>( @ |t |ows) + 7] 4, Jons))
— —W <2_‘P2,an_1 ‘77;1>
_ g (H.410)

where in the fourth line we used the Schouten identity, in the sixth line momentum conservation,
and in the last line eq. (H.393). Substituting eq. (H.410) into eq. (H.407), we obtain eq. (1.440)

and this completes the proof.

H.35 Five-graviton MHV amplitude

Write the n-graviton MHV the amplitude M,, as
M,(1,2,...,n) = (ij)5M,(1,2,...,n), (H.411)

where i and j are the negative-helicity gravitons and M, is helicity independent. Use Hodges for-
mula [31] for M,

M,(1,2,...,n) = (=1)""'sgn(ijk) sgn(rst)c;pc™| o] (H.412)

rst )

where sgn(ijk) = sgn(o(i, j, k,1,2,..., 4,4, F,...,n)) is the signature of the permutation which moves

i,J, k up front in the sequence. Compute M; using the minor determinants,

L |¢lie
Solution. We recall that []
i) .,
Yizhy T
i _ N LKl (Rx) (Ry)
= 2 iy ) ()

is obtained by deleting rows 4, j, k and columns p, ¢, r from

(H.413)

ijk
par
the matrix whose entries are ¢'; above. Further, the coefficients read

and the minor determinant |¢|

Mt = ey = (i) (k) (ki) ™" (H.414)
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Therefore, we have
=
((12)(23)(31))?

with

Performing the simplifications with c¢j03 we are left with

i [43]53

1
(12)? ((43>
]

+

(23)(31)(45) (41)(42) (53)
]

(54][43]
<54><51><52><43><31><23>)

+

. |¢]i’§g and verify that they agree.

Solution. We start with

e — PiPs — 505
b (12)(23)(31)(34)(45)(53) ’

where

1 o1 o [14][25](24)(15) — [15][24](14)(25)
PaPs — PPy = (14) (25 (24) (15)

Using momentum conservation one can verify that the two expressions correspond.
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H.36 Gravity with light and matter

In order to investigate gravitational interactions with light and matter, consider an extension of the

Einstein-Hilbert action, where we add the minimal coupling of gravity to a massive scalar field [6].

4 2 g gr? gt m? 2
SuE = /d Tv—g ?R - TFWFW + o (au¢) (0,0) — 7¢ ) (H.424)
where g is the metric tensor, g its determinant, R is the Ricci curvature and x is a coupling constant

related to Newton’s constant by x? = 327G y.

As already seen in the lectures, the rules for the propagators and vertices involving gravitons are
obtained by expanding the metric around flat space (1.425), ¢ = n*” + kh*”. However, we by-
pass the extraction of the Feynman rules from the Lagrangian and use the spinor-helicity formalism,
combined to the BCFW recursion, in order to calculate some amplitudes that have relevance in grav-
itational physics: the gravitational bending of light by a mass, and the scattering of a gravitational
wave off a mass. In both examples, the mass acting as a source of gravitational field is taken to
be a scalar particle. External scalar particles must have helicity h = 0!, photons can have helicities
h = +£1 and gravitons can have helicities h = +2. One may choose a gauge in which their polarisation

vectors are “squares” of the gluon polarisation vectors (1.427), €5 (p, q) = €, (p, q)€r(p, q).

1. For three-point amplitudes that involve only massless particles (photons and gravitons), little
group scaling and dimensional analysis are sufficient to constrain completely their form. What
is the mass dimension expected for M3?7 What is the coupling for the three-point vertex hyy?

Derive the expression of

M (15,27,37) My (17,25.37) M3 (1f,27,3))

hy S5 ho Sy =y 7y
M (1,,27,3,) My (1,2,,37)
Solution. We use the results of egs. (1.341) and (1.342) with hy = £2, hy = £1, hy = %1,

considering in addition that M3 must have overall mass dimension 1 and that the coupling x

has mass dimension —1. We obtain

Ms (15,25,3%) = M3 (13,27,37) =0 (H.425)
M (1F,24,37) = 5[12]4[23]—2 (H.426)
M (1F,27,37) = 2[23]—2[31]4 (H.427)
My (1;,24,37) = g<23>—2<31>4 (H.428)
My (1;;,2;,3F) = g(1z>4<23>*2 (H.429)

'For a massive scalar particle, we would need to consider the representation of the little group of spin 0, i.e. the
singlet. However, for conciseness the amplitudes with massive scalar particles do not carry explicit little group indices.
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2. For the ¢p¢h amplitude, we cannot rely on little group scaling because the massive scalar field
is in the singlet representation of SU(2), thus it does not change under the action of SU(2).
Instead, we turn to the Feynman rule for the corresponding vertex I'*”, which reads [6]

1K

T (pr,pa) = 5 [PiDs + pivh — " (p1-po = )], (H.430)

Where py, ps are the momenta of the legs of particle ¢. This vertex is intendend to be contracted

with the polarization vector of the graviton to give €, """ = iMygy. Derive
M3<1¢a2¢73ﬁ>7 M3(1¢72¢73}?) . (H431)

Solution. In the following we will denote ¢* as e for brevity. The term proportional to

N gives the contraction €*(ps, q) - €(p3, ¢) which vanishes by Fierz rearrengement. Hence,

M;5(14,24,37) =i (p1 - €4 (p3;9)) (P2 - €+ (p3;9))

_in{alpi[ ] (alpy| ]

: T (H.432)
My(14,24,37) = ";<p3 Wl)[‘i)g?f pel] . (H.433)

H.37 Gravitational bending of light

Using on-shell recursion relations, derive the amplitude M4(1j/“, 2,3, 44) for the scattering between

a photon and a massive scalar, mediated by a graviton. Since the photon v and the scalar ¢ do
not couple directly, the only tree diagram involves the exchange of an intermediate graviton. As a
consequence, the only possible shift for a BCF'W recursion relation involves v and ¢, since the shifted
legs need to be on opposite sides of the internal propagator. Consider the BCFW relation with the
shift,

P2=pat+zq, D3 =ps—2q. (H.434)

1. Show that the vector ¢* such that

) = 12) (H.435)
lq] = p, 12) (H.436)

satisfies the requirements to be a good shift, i.e.
2 — —_— p—
¢ =0, qg-pp=¢q-p3=0. (H.437)

Solution. Since py is lightlike, the condition 2ps - g = (2¢)[¢2] = (27| |¢T) (¢7]27) = 0 can
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be satisfied by choosing, for instance,

9) = 12)
We turn to the other condition,
2q - ps = {alp, la] = (2[p, 1d] (H.438)
which can be satisfied by |¢] = p, [2),
2l p, la) = 2 pp, 12) = m*(22) = 0. (H.439)
. Assume My(z) — 0 as z — oo and compute M,(17,27,3,,44) starting from the recursion
relation, .
. _ . A A~ (2 S ho5
iMy(1F,27,34,44) = ;zMg(q, 27, —Pljh)ﬁz]\/[g,(Ph "3, 44) (H.440)
Hint. A convenient choice of reference for the polarisation vector is ¢ = ps.
Hint. Find explicitly the value of z such that PQ(z) = 0 in order to appreciate the differences
from a massless shift.
Solution. As opposed to the massless shift, here we don’t have an explicit expression of

the shift ¢* via the Gordon identity, because the massive momentum shift does not factorize
into singular shifts of the kets associated to it. Nonetheless, from eq. (H.435) and (H.436), it
is natural to consider the operator |g| (¢|. If we contract eq. (H.434) with ~, and then consider

only the operator (p-o)® = (|p] (p|)”, we have

2] (3] = [2) (21 + 2 ) gl = 12) 21 + 2p, [2) (21 = (12] + 25, 12) 2], (H.441)
p3-o=ps3-0—=z|q{ql =ps-0—2p,|2) (2] . (H.442)

We see from eq. (H.441) that

2] = [2] + zp, |2) (H.443)
) =12) (H.444)

D>

and, as already anticipated, the same factorization cannot be performed in p3 - . We need to
derive the value of z such that 0 = ﬁfg(z) We have

0 = P2y(2) = 2pa(2) - pr = 12)(21) = (21) 1] (12] + =, 12)) . (H.445)

which implies
—) (H.446)
[1lp,12)

Now we write the recursion relation. Plugging in the results for the three-point amplitudes and
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summing explicitly over the two helicities of the intermediate graviton, the yy¢¢ amplitude

can be written as

. e [Pl Pl (Pol) (alp) Pl
iMa(1, 2 3¢’4¢)_Z<12>[12] (122 [gP)’ Ty (q|Pra)’

v

(H.447)

In M, above ¢* is the reference vector of polarisation vector of the graviton?. For the first term,

we may write

Pal]" [Pal]' (Pral)’

(2p1 - p2)
~ — N —_ 1 N
[12]? [12]2 (Py5|1) [12)? (Py,)1)"

since we evaluate the expression at z. There