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Abstract

The possibility to drive a SASE X-ray FEL using the 6 GeV electron linac foreseen by
the SuperB project has been recently considered. In this paper a preliminary design study
based on FEL scaling laws supported by HOMDYN and GENESIS simulations is pre-
sented. The goal of this work is to provide a preliminary design study of the FEL system,
based on state of the art normal conducting technology, suitable to conduct a realistic
evaluation of the additional costs required to drive an FEL user facility making use of the
SuperB linac.
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1. INTRODUCTION	
 
After the successful demonstration of exponential gain in a Self Amplified 

Spontaneous Emission (SASE) Free Electron Laser (FEL) and the operation up to 
saturation at FLASH (5 nm) and LCLS (1 Angstrom), a number of short wavelength 
SASE-FEL projects have been funded or proposed world wide [1], oriented as user 
facilities. Free electron lasers are poised in fact to take center stage as the premier 
source of tunable, intense, monocromatic photons of either ultra-short time resolution 
or ultra-fine spectral resolution. The choice of FEL radiation wavelength ranges from 
infrared down to hard X-ray, and the adopted linac technology is based on normal 
conducting (S-band or C-band) or superconducting accelerating structures (L-band). 
In this context the possibility to drive a SASE X-ray FEL using the 6 GeV electron 
linac foreseen by the SuperB project [2] has been recently considered.  

In this paper a preliminary design study based on FEL scaling laws [3] 
supported by HOMDYN [4] and GENESIS [5] simulations is presented. The goal of 
this work is to provide a preliminary design study of the FEL system, based on state 
of the art normal conducting technology, suitable to conduct a realistic evaluation of 
the additional costs required to drive an FEL user facility making use of the SuperB 
linac. Figure 1 shows a schematic layout of the SuperB linac system [2]. 

 
 

 
Figure 1 – SuperB injection system layout 

 
 

As shown in the figure, electrons are accelerated up to 1-1.5 GeV in linac 1 
and then injected into the damping ring (DR). The same electron beam, when 
impinging on a converter target, can be used to produce positrons. Linac 2 is used to 
capture and accelerate positrons up to 1 GeV before injection in DR. Both electron 
and positron beams are stored in DR for emittance damping. Linac 3 (green in the 
figure) provides additional 6 GeV to the beams in a 300 m long tunnel, with 87 S-
band travelling wave accelerating structures operating at a maximum gradient of 23 
MV/m, up to the required energy for injection in the SuperB main rings. Linac 3 can 
be conveniently used to drive also an FEL within the time sharing scheme discussed 
in the last section. Additional 150 m are available downstream linac 3 where the 
matching section, the undulators and the photon beam transport lines can be installed. 
Up to 60 m upstream linac 3 can be allocated for the FEL injection system. 
 
 

2. FEL	SCALING	LAWS	
 

When an electron beam traverses an undulator, it emits electromagnetic 
radiation at the resonant wavelength: 
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In particular   represents the efficiency of system such that final saturation 
electromagnetic power emitted by an electron beam of power 

Pb TW   Eb[GeV]Î [kA] is given by: 

 

Psat  2Pb      (3) 

 
The undulator length required to achieve saturation, as predicted by the 3D model, is 
given by: 
 

Lsat
3D  20 1 LG

1D     (4) 

 
where  

LG
1D  u

4 3
     (5) 

 

is the gain length predicted by the 1D model and   f d,,   is a polynomial 

function of scaling parameters that accounts for the contribution of 3D effects: 
diffraction d, emittance   and energy spread  , as discussed in [3]. In our case 

the contribution of diffraction effects is dominant with respect to energy spread and 
emittance. 

Equations (3) and (4) show that to maximize the extracted power within a 
minimum undulator length, one has to get the highest possible FEL parameter  . In 
addition optimal FEL performances in terms of minimal radiation bandwidth and 
transverse coherence can be achieved when the beam energy spread satisfies the 
following condition: 




       (6) 

 
and the beam emittance is smaller of the radiation “emittance”: 
 

n r 4      (7) 

 
Equation (7) implies in our case that for a radiation wavelength of 3 Angstrom the 
normalized emittance has to be smaller than 0.3 m. The difficulties to achieve such a 
high quality beam are partially mitigated by the fact that the radiation amplification 
process occurs on the scale of the cooperation length [12]: 
 

Lcoop 
r

4
          (8) 

 
over a slice of length Lslice  2Lcoop  

[12], typically much shorter than the bunch 

length,  so that only bunch slice parameters are important for the FEL process, thus 
relaxing the conditions imposed by (6) and (7).

 
 



 

Fi

Figu

igure 3 – 

ure 4- Betat

  parameter

tron functio

r versus emi

on versus un

6

 
ittance and p

  

ndulator per

by eq. (9).

peak curren

riod u and

nt as predict

d parameter 

 

ted by eq. (2

 
K, as predi

2). 

cted 



 

para

incr

  o

assu

show

valu
Lslic

size
satis
with
 
 

Equatio

ameter, and

reasing  Î  a
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By accelerating the beam, a transition occurs to the so-called emittance dominated 
regime, when  1, in this case the transverse beam dynamics is dominated by the 
emittance and correlated effects are not anymore observed. In case of bunch 
compressor systems are foreseen along the linac space charge effects might become 
important again and the transition from space charge to emittance dominated regime 
shift at higher energy, see Fig. 7. In this case the whole linac behaves like a long 
injector [20] and the same matching condition (12) should be applied also at higher 
energy. 

In this section we illustrate a possible layout of the electron linac able to 
produce the required high brightness beam to drive the X-ray FEL discussed in the 
previous section. We decided in this study to minimize the impact on the SuperB linac 
design, including only the indispensable hardware modifications needed to achieve 
the expected beam parameters reported in table 1. We decided also to consider only 
single bunch operation at moderated charge per bunch (200 pC) with a repetition rate 
of 33 Hz, fully compatible with the operation of  the SuperB linac with the SLED 
option. 

The beam dynamics study of the photo-injector and linac described here has 
been performed with the HOMDYN [4] code. HOMDYN is a fast running code 
whose main approximation consists in supposing the bunch as a uniformly charged 
cylinder divided in slices. The evolution of each slice, longitudinally and 
transversally, is described  by envelope equation where electromagnetic fields are 
assumed to be linear. Moreover transverse and longitudinal wake fields are included 
[13]. On the other hand Coherent Synchrotron Radiation  and related micro-bunching 
effects in the magnetic compressor are not yet included. 

 

 
Figure 8 – Upper plot: shematic layout of the SuperB linac (green) and the new XFEL  

injection system (yellow). Lower plot: details of the foreseen modifications. 
 

Figure 8 shows a schematic layout of the XFEL linac: in the upper plot is 
shown the SuperB main linac in green, hosted in the 300 m long tunnel, and the new 
FEL injection system in yellow, located in the 50+10 m long Damping Ring bunker. 
The lower plot details the foreseen modifications. Notice that a 30 m long magnetic 
compressor system (Comp2) has to be included in a bypass line of the main linac, 
thus reducing the available accelerating sections for the XFEL beam (the SuperB 
beam won’t be affected making use for example of pulse dipole magnets). It follows 
that the FEL injection system has to provide also the missing energy to achieve the 
final 6 GeV. 
We have investigated the following layout for the FEL injection system: 
 

- S-band injection system (2856 MHz) composed by one 1.6 cell RF 
photoinjector followed by 2 TW structures embedded in a solenoid magnetic 
field as required to operate in the Velocity Bunching mode. A copy of the 
existing SPARC_LAB photoinjector. 8 m long. 

S_band Comp2  S_band Cband Comp1  XVB 

S band – 300 m  NEW – 50 m  
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- C-band linac  (5712 MHz) with 13 TW structures operating 15 degrees off 
crest to drive the downstream first magnetic compressor. A similar design is  
foreseen for the ELI_NP linac project. 27 m long. 

- 2 X-band structures (11.424 GHz). 1.5 m long. The beam loses here about 100 
MeV. 

- Magnetic Compressor 1 for the first bunch length compression stage to 
increase the peak current at least up to 720 A in a 8 m long magnetic chicane 
with R56 = 23 mm. 

 
The S-band injector operates at 125 MV/m in the RF gun and at 25 MV/m in the 

accelerating structures, driving the beam to an energy of 75 MeV in the compression 
mode. The bunch is compressed with the velocity bunching technique [14,15] 
reaching a peak current of 145 A, corresponding to a compression ratio of a factor 4.4 
The beam is then injected in the downstream C-band linac [16] operating at an 
accelerating field of 35 MV/m to boost the beam up to 750 MeV, driving the beam 
out of the space charge dominated regime. The beam is accelerated along the C-band 
linac 15 degrees out of crest to fulfill the downstream magnetic compressor 
requirements: the induced energy spread is 0.4% thus allowing a magnetic chicane 
(with R56=23 mm) to compress the beam to 25 m length with a final current of 720 
A, a gentle compression ratio of a factor 5. Two X band accelerating structures [17] 
operating at 60 MV/m field in the decelerating phase reduce the longitudinal beam 
emittance as required by the downstream compressor systems. In this configuration 
the whole linac is 45 m long. 
The beam parameters at the exit of the FEL injection system are reported in Table 2. 
 

Table 2 
Eb IFWHM n,rms 

600 MeV 720 A 1 m 4 x10-3 
 
The FEL beam is then injected in the SuperB S-band linac including the following 
subsystems: 
 

- 	S-band linac 3a to boost the beam up to 2.3 GeV with 25 TW structures 
operating at an accelerating field of 23 MV/m, 20 degrees off crest to drive the 
downstream second magnetic compressor.  

- Magnetic Compressor 2 for the second bunch length compression stage to 
increase the peak current up to 2 kA in a 30 m long magnetic chicane with R56 
= 18 mm. 

- S-band linac 3b to boost the beam up to the final energy of 6 GeV with 54 TW 
structures operating at an accelerating field of 23 MV/m, on crest to damp the 
beam energy spread with contribution of the longitudinal wake field effects.			

 
The beam parameters at the exit of the FEL injection system are reported in Table 3. 
 

Table 3 
Eb IFWHM n,rms   �

6 GeV 2 kA 1.2 m 4.2 x10-4 10 m 
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Figure 9 – Beam energy gain evolution along the linac. 

 

 
Figure 10 – Beam peak current evolution along the linac. 

 

 
Figure 11 – Beam energy spread evolution along the linac. 
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Figure 12 – Beam rms normalized emittance evolution along the linac. 

 
Figures 9,10,11 and 12 illustrate the evolution along the full linac of the beam energy, 
peak current, energy spread and normalized emittance. The line colors are consistent 
with the schematic layout of Figure 8. 

This preliminary investigation show that the parameters listed in Table 1 are 
reachable with the proposed layout with expected slice parameters even better than 
the one of Table 3, resulting in a beam brightness B  > 1015 A/m2. Some concern 
about the compressor systems arising from the oversimplified model adopted in 
HOMDYN should be clarified by using more advanced code like PARMELA [18] 
and ELEGANT [19]. In addition the transition from the C-band linac to the S-band 
linac has to be matched with a more careful analysis. For example the transfer line 
from the C-band linac to the S-band linac can be used by itself as a compressor. 
Notice that in this study we have transported the beam matched to the RF focusing 
only, as it is possible in a high brightness electron beam [20]. More standard focusing 
by means of quadrupoles should be also investigated in order to keep under control 
possible quadrupole components of the RF fields. The matching section with the 
undulator at 6 GeV has not been investigated. 
 
 

4. FREE	ELECTRON	LASER	SIMULATIONS	
 

Two basic single-pass SASE XFEL options have been investigated with 
simulations made with the GENESIS 1.3 code [5] and are presented in this section. 
The assumed electron beam slice parameters at the undulator entrance, consistent with 
the results reported in Table 3,  are shown in Table 4.  

 
Table 4 

Eb Islice n,slice  
6 GeV 2.5 kA 0.6 m 1 x10-4 

 
The current is supposed to have a Gaussian profile with a peak value Ipeak=2.5 kA and 
a rms width z=10 m.  Emittances of 0.6 m in both planes and an energy spread 
slice value of 10-4  have been assumed. Two different cases have been investigated: 

- SPARC-like undulators [10], with period	u	=2.8 cm, 
- shorter period undulator withu	=1.8 cm	 

with both undulators parameters summarized in Table 5. 
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Table 5 

 SPARC-like Short period 
Period u (cm) 2.8 1.8 
aw0  (=K/√ 2) 1.51 1.2 
Section length (m) 3.36 2.16 
Gap length (m) 0.42 0.27 
r(Å) 3.16 1.525 
x(m) 66 50 
y(m) 40 35 
(m) 50 32 

 
 

 
Figure 13 – Energy [J]  vs coordinate z [m] along the undulator chain for the SPARC-

like case. 
 
 
In the first case the achievable wavelength is r = 3.16 Angstrom. Optimum matching 
conditions have been considered. The radiation growth is shown in Figure 13 , and the 
radiation power and spectrum at the end of the undulator in Figure 14 and 15. The 
onset of saturation is at ~80-90 m including gaps between undulator modules (~11 
m), and the total energy extracted is 270 J . The gain length estimated from figure 13 
is slightly less than 5 m. In Table 6 (second column) the radiation parameters for this 
case are summarized. The far field at the end of the undulator is characterized by the 
presence of one single transverse mode. 
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Figure 14 – Radiation spectrum at the end of the undulator chain, SPARC-like case 
 

 
Figure 15 – Radiation power density at the end of the undulator chain, SPARC-like 
case. 
 

Table 6 
 SPARC-like Short period 
r(Å) 3.16 1.525 
Ls(m) ~90 ~78 
Es(J) 270 114 
bw(%) 0.04 0.023 
Lg(m) ~4.8 ~4.4 

 
The second case analyzed is a short period undulator, whose characteristics 

are summarized in Table 5 (second column). The radiation parameters are reported in 
Table 6 (third column). In this case the resulting wavelength is r =1.525 Angstrom. 
The radiation goes to saturation in about 80 m at an energy level of 114 J. Energy 
growth, spectrum and power distribution at the end of the undulator are respectively 
in figures 16,17 and 18. 
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Figure 16 - Energy(J)  vs coordinate z(m) along the undulator for the short period case 

 
Figure 17 - Radiation spectrum at the end of the undulator chain, short period case. 

 
Figure 18 – Radiation power density at the end of the undulator chain, short period 
case. 
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6. CONCLUSIONS	
 

A preliminary design study of a possible X-ray FEL source making use of the 
SuperB electron linac has been presented in this paper. A large number of 
improvements are still possible for the linac design, giving a better beam quality in 
terms of emittance and peak current, able to produce a higher photon flux with a 
shorter saturation length. Some critical aspect should be also solved, as the need of a 
laser heater, the best position of the X-band cavities, the transfer lines and the 
compressor systems, the matching of the beam with the focusing channel according to 
condition (12). A more systematic study on these issues is under way. 

More advanced FEL scheme than SASE should be also considered to improve 
the radiation quality (coherence), for example: “Self-seeding” [29], “High-gain 
harmonic generation”, “Seeded harmonic cascade” or the possibility to produce ultra-
short pulses at the atto-second level. To extend the user opportunity, the electron 
beam could be also extracted at a lower energy (~3 GeV)  and used to produce 
radiation in the soft X-ray range with a reach user program, as in the case of the the 
SPARX project [22].  

Furthermore a role of great relevance will be played by the development of 
dedicated X ray detectors. The signal to noise characteristics of the Silicon Drift 
Detectors (SDD) of large area developed by INFN and installed in the ALICE 
experiment at CERN-LHC have motivated a dedicated INFN project to perfection 
those detectors for the use in the frames of low energy X-ray detection down to 
energies of the order of the order of the KeV [32]. With a process of incremental 
innovation those detectors, of noticeable dimensions (about 7 x 7 cm2), are at present 
developed in the direction of efficient, high resolution, reliable X-ray detection for 
advanced light sources. Silicon Drift Detectors in particular, because of their 
operation principle [33], are apt for the needed specific evolutionary processes. 

Useless to say that such a high brightness linac might drive several other 
applications. For example the 700 MeV injector could be used, in a stand alone 
operational mode, to drive a Compton γ−ray source, as the one under study for the 
ELI_NP collaboration [21]. In this way γ−rays with energies of 10-20 MeV can be 
produced and directed head-on against electrons of 700 MeV. A reach physics 
program can be studied [30], which includes –among others- the precise measurement 
of the 0 width through the process e-  0 e- (Primakov effect), and the search for 
light dark bosons in the energy region below 250 MeV [31]. These measurements, 
which provide important tests of the Standard Model, are not possible at present 
electron-photon colliders due to the low photon intensities of the machines. 

Powerful THz radiation sources can be also considered. The accepted 
paradigm of condensed matter physics n fact is that the high-energy short-time 
dynamics affects the low-energy long-living degrees of freedom. Actually, pushing a 
system out-of-equilibrium, this hierarchy could be reversed. This determines a non-
linear coupling among several degrees of freedom providing the possibility to 
coherently manipulate different states of matter. In this scenario, one can cite for 
instance the possibility to coherent induce a conformation transition in 
macromolecules, selectively pumping a low-energy collective mode; or even inducing 
a coherent structural phase transition through a phonon pumping. This “low-energy” 
manipulation can be obtained through strong terahertz (THz) sub-ps pulses associated 
to electric field in the order of 1 MV/cm.  Broad band THz pulses showing these 
characteristics can be produced in a linac by using Transition Radiation (CTR) targets 
[23] or dipole radiation [22]. Single color THz radiation, can be also produced 
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combining a comb-beam with a CTR target [23]. A different scheme consists in a 
THz ondulator which could be mount at the end of the FEL ondulators. In this case 
the monocromatic THz radiation could be coupled to x-ray light for THz-pump x-ray 
diffraction probe experiments. 

Last but not least, advanced accelerators concepts could be also tested, like 
Plasma acceleration or Dielectric wake field acceleration [24], to increase the final 
beam energy. 
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