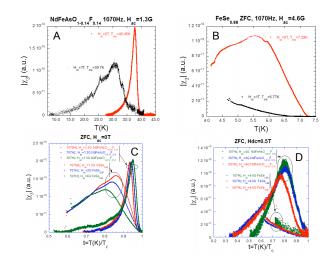


LAMPS Laboratory in LNF

It is start up and operative the new *LAboratory Magnetic high Pressure and Spettroscopy* (**LAMPS**) of the Research Division of LNF. The laboratory is located inside the LNF in the Building 'LEGNARO', whose responsible is Dr. Daniele Di Gioacchino.

This laboratory hosts the PRESS-MAG-O apparatus. Moreover now are active other cryostats: 1) one with a temperature control using a manual dip in liquid He bath of the resistive measurement insert, 2) second with a control of the temperature via a cold flux from liquid helium bath by means of a needle valve, in this second system are effective the electric transport insert and the ac magnetic multi-harmonic susceptibility insert, in this cryostat is present also a superconducting magnets up to 8 T. In figure are shown pictures of the LAMPS laboratory



Pictures of the LAMPS laboratory

Experimental activity

In addition to the commissioning of the PRESS-MAG-O instruments, in LAMPS laboratory are operative researches on LTc and HTc superconducting, magnetic materials and resistive devices. As example of various researches at the present (2011-2012) are under analysis the flux dynamic behavior of the new iron based high T_c superconductors with the comparison between NdFeAsO_{1-0.14}F_{0.14} (T_c=49K) and FeSe_{0.88} superconductors (T_c=7K), they have similar structures but only NdFeAsO_{1-0.14}F_{0.14} has included a stack of layers along the c-axis direction, this system is composed by alternating FeAs and NdO layers which act like spacers, while the FeSe_{0.88} is composed by only FeSe layers. We characterized the flux dynamics of these materials by performing ac multi-harmonic magnetic susceptibility measurements and show that the |X₃| third harmonic component modulus of the magnetic susceptibility is larger for the NdFeAsO_{1-0.14}F_{0.14} sample with respect to the FeSe_{0.88}. Moreover the FeSe_{0.88} measurements show that this harmonic component is much more dependent by amplitude and frequency of the applied H_{ac} field than in the NdFeAsO_{1-0.14}F_{0.14} sample and in the FeSe_{0.88} this component of the magnetic susceptibility is strongly reduced with the application of a H_{dc} field. These analysis are shown in figure, it is evident that, the

NdFeAsO_{1-0.14}F_{0.14} system could be characterized by a strong pinning strength even with a larger thermal fluctuations. Usually the pinning processes in the case of NdFeAsO_{1-0.14}F_{0.14} are due to F doping and a similar pinning contributions in the FeSe_{0.88} is correlated to Se vacancies. To explain the observation of the strong pinning in the NdFeAsO_{1-0.14}F_{0.14} respect to FeSe_{0.88} we hypothesize that in the REO plane a stack of layer along the c-axis direction, where are Nd magnetic moment (μ ~3.6 μ _B) are present, strongly contributes to the pinning mechanism in addition to doping in NdFeAsO_{1-0.14}F_{0.14} sample.

Magnetic susceptibility third harmonic $|\chi_3|$ modulus of the NdFeAsO_{1-0.14}F_{0.14} and FeSe_{0.88} samples respect to DC magnetic field (A,B) and frequencies (C,D)

Moreover are active Research Doctorate and research thesis for undergraduate students.

References (2010-2011)

- **1.** D. Di Gioacchino, A. Marcelli, P. Puri, A. Bianconi, " *the a.c. susceptibility third harmonic component of NdO*_{1-0.14}F_{0.14}FeAs" Journal of Physics and Chemistry of Solids 71 (2010) 1046–1052
- **2.** D. Di Gioacchino, A. Marcelli, M. Cestelli Guidi, M. Piccinini, A. Puri, P. Postorino, E. Pace, A. De Sio, L. Gambicorti, *Status of PRESS-MAG-O: the experimental apparatus to probe material and phenomena under extreme conditions*, Journal of Physics and Chemistry of Solids 71 (2010) 1042–1045
- **3.** W. Xu, A. Marcelli, B. Joseph, A. Iadecola, D. Di Gioacchino, A. Bianconi, N.L. Saini, Oxygen disorder and its effects on the local structure of REOFeAsO Experiments and multiple scattering calculations, J. Phys.: Condens. Matter 22 (2010) 125701
- **4.** W. Xu, B. Joseph, A. Iadecola, A. Marcelli, W. S. Chu, D. Di Gioacchino, A. Bianconi, Z. Y. Wu and N. L. Saini," *Arsenic K-edge XANES study of REFeAsO oxypnictides*" EPL, 90 (2010) 57001

- 5. D. Di Gioacchino, A. Marcelli, M. Cestelli Guidi, A. Puri, P. Postorino, E. Pace, A. De Sio and L. Gambicorti, PRESS-MAG-O: a unique instrument to probe materials and phenomena under extreme conditions at Frascati, High Pressure Research 31 (2011) 91–97
- 6. D. Di Gioacchino A. Marcelli, A. Puri, A. Iadecola, N.L. Saini, A. Bianconi "Influence of the extra layer on the transport properties of NdFeAsO_{1-0.14}F_{0.14} and FeSe_{0.88} superconductors from magneto dynamic analysis" J. Supercond. Nov. Magn. (2011) in press
- 7. A. Puri, A. Marcelli, M. Cestelli Guidi, P. Postorino, E. Pace, A. De Sio, L. Gambicorti D. Di Gioacchino "PRESS-MAG-O: new advances in the instrument commissioning" Internal note LNF- 11/19 (NT) (2011)
- 8. Dr. Alessandro Puri PhD Materials Science Universita' Sapienza Rome, 'Experiments on strongly correlated materials under extreme conditions', 2011/12