$\mathrm{K}-\mathrm{K}+$ hit discrimination using conformal mapping method

2 Problems:

1. Kaon hits identification (too many isim hits associated to $\mathrm{K}-\mathrm{K}+$)
2. Charge identification (K^{-}vs K^{+}) (before double helix fitting)

Kaon hits identification in 2 steps:
To transform from double helix to single helix:
Lorentz Trasformation with Φ Boost $p_{x}=2 \sin (\alpha)$ with α crossing angle
To transform from single helix to straight line:
Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$

Conformal Mapping

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$
to the straight line equation: $v=1 /(2 b)-(a / b) u$

Conformal Mapping

We can associate $\mathrm{K}^{-} \mathrm{K}^{+}$isim hit pair:

1. building a straight line for each pair and
2. choosing the pair with a "proper" radius

Conformal Mapping

Conformal Mapping on Data

\Rightarrow Distance straight line-origin with $\mathrm{K}_{\text {stop }}$ and $\mathrm{K}^{+}{ }_{\text {stop }}$ vx,vy,vz coord.

Closer to the origin

\square Distance with $\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$ Conformal Mapping

Only one bump

\Rightarrow Distance with $\mathrm{K}_{\text {stop }}$ and K^{+}stop Lorentz transformation and Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$ without Lorentz transformation and with Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}^{+}{ }_{\text {stop }}$
Lorentz transformation and Conformal Mapping

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}^{+}{ }_{\text {stop }}$
w/o Lorentz transformation and Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$ Lorentz transformation and Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation and Conformal Mapping

Conformal Mapping on Data

Conformal Mapping $x, y \Rightarrow u=x / \sqrt{ }\left(x^{2}+y^{2}\right), v=y / \sqrt{ }\left(x^{2}+y^{2}\right)$ transforms the circle equation $(x-a)^{2}+(y-b)^{2}=R^{2}$ to the straight line equation: $v=1 /(2 b)-(a / b) u$ With two points we can calculate a,b (circle center coord.) and R (circle radius):

Simulation with MC K pid check
$\mathrm{K}_{\text {stop }}$ and $\mathrm{K}_{\text {stop }}$
Lorentz transformation
and Conformal Mapping

Conformal Mapping on Data

Discrimination of the right $\mathrm{K}^{-} \mathrm{K}^{+}$pair

Conformal Mapping on Data

Choosing $\mathrm{K}_{\text {stop }}$ and K^{+}stop with Lorentz transformation on Conformal Mapping is without ambiguities:

Discrimination btw $\mathrm{K}-\mathrm{K}^{+}$and $\mathrm{K}^{+} \mathrm{K}^{-}$- solution looking at a,b center coordinates (only with Lorentz transformation) in respect to the origin:

$C(a, b) \times K^{ \pm}$on Φ c.m. frame

