K- K+ hit discrimination using conformal mapping method

2 Problems:

- 1. Kaon hits identification (too many isim hits associated to K- K+)
- 2. Charge identification (K⁻ vs K⁺) (before double helix fitting)

- Kaon hits identification in 2 steps:

To transform from double helix to single helix:

Lorentz Trasformation with Φ Boost $p_x = 2\sin(\alpha)$ with α crossing angle To transform from single helix to straight line:

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$

Conformal Mapping

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)u

Conformal Mapping

We can associate K⁻ K⁺ isim hit pair:

- 1. building a straight line for each pair and
- 2. choosing the pair with a "proper" radius

Conformal Mapping

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)u With two points we can calculate a,b (circle center coord.) and R (circle radius):

K⁻_{stop} and K⁺_{stop} Lorentz transformation and Conformal Mapping

K⁻_{stop} and K⁺_{stop} without Lorentz transformation and with Conformal Mapping

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)u With two points we can calculate a,b (circle center coord.) and R (circle radius):

K⁻_{stop} and K⁺_{stop} Lorentz transformation and Conformal Mapping

K⁻_{stop} and K⁺_{stop} w/o Lorentz transformation and Conformal Mapping

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)u With two points we can calculate a,b (circle center coord.) and R (circle radius):

K⁻_{stop} and K⁺_{stop} Lorentz transformation and Conformal Mapping

15

10

Ksoltvp == 0

Bad solutions

20

25

30

radius

2983

3.287

2.364

0

25

Entries

Underflow

Overflow

Mean

RMS

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)uWith two points we can calculate a,b (circle center coord.) and R (circle radius):

radius

14

104393

5.712

1.41

1015

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)uWith two points we can calculate a,b (circle center coord.) and R (circle radius):

9046

5.899

2.812

495

Mean

Underflow

Overflow

RMS

ւ ՌՈւսՐ՝

Conformal Mapping x,y \Rightarrow u = x / $\sqrt{(x^2+y^2)}$, v = y / $\sqrt{(x^2+y^2)}$ transforms the circle equation $(x-a)^2+(y-b)^2 = R^2$ to the straight line equation: v = 1/(2b) - (a/b)u With two points we can calculate a,b (circle center coord.) and R (circle radius):

Discrimination of the right K⁻ K⁺ pair

Choosing K⁻_{stop} and K⁺_{stop} with Lorentz transformation on Conformal Mapping is without ambiguities:

Discrimination btw K⁻K⁺ and K⁺K⁻ solution looking at a,b center coordinates (only with Lorentz transformation) in respect to the origin:

 $C(a,b) \ge K^{\pm}$ on Φ c.m. frame