On the way to reach high resolution spectra with FINUDA

S. Piano Finuda TRIESTE

Calibration and Alignment

- VDET aligned (looking at V60504)
- DCH1 and DCH2:
 - Different behavior of negative and positive tracks
 - Residual distributions depend on anodic wire
 - Z few centimeters
 - Φ few millimeters
- STRAW:
 - Waiting for reliable 2003-2004 Cosmic Rays
 Calibration Table on FINUDA Data Base (the basis of the global alignment...)

Drift Chamber Residual Distros (Germano)

Z Side Residuals vs Anodic Wire reszvsy_ch1_2 Entries 4437478

reszvsy_ch1_4

reszvsy_ch2_0

Entries 4725890

reszvsy_ch2_2

Calibration and Alignment

- VDET aligned (looking at V60504)
- DCH1 and DCH2:
 - Different behavior of negative and positive tracks
 - Residual distributions depend on anodic wire and on **TIME** !!!
 - Z few centimeters
 - Φ few millimeters
- STRAW:
 - Waiting for reliable 2003-2004 Cosmic Rays
 Calibration Table on FINUDA Data Base (the basis of the global alignment...)

runvsreszvsy_ch1_0_w_03

runvsreszvsy_ch1_0_w_05

runvsreszvsy_ch1_0_w_10

runvsreszvsy_ch2_4_w_05

Drift Chamber Z Side ... the ADC SIDE of the moon

- Residual mean values of few centimeters
- Strong dependence on Time
- Existing ADC calibrations are not good enough to get acceptable resolution on long and short tracks
- Please, check the ADC calibrations runby-run

Φ Side: Garfield Correction vs Drift Time and vs Attach Angle

Dpthch1:Dich1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dich1 > 200 && Dich1 < 300}

Garfield Correction vs Attach Angle with 0 ns < Drift Time < 10 ns

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dtch1 > 0 && Dtch1 < 10}

Garfield Correction vs Attach Angle with 10 ns < Drift Time < 20 ns

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dich1 > 10 && Dich1 < 20}

Garfield Correction vs Attach Angle with 100 ns < Drift Time < 110 ns

Dpthch1:Adjdch1 {Mam > 0.030 && Mam < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dtch1 > 100 && Dtch1 < 110}

Garfield Correction vs Attach Angle with 200 ns < Drift Time < 210 ns

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 > 9 && Dtch1 > 200 && Dtch1 > 210}

Garfield Correction vs Attach Angle with 300 ns < Drift Time < 310 ns

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Ch2 < 100 && Nch1 > 0 && Nch1 > 9 && Dtch1 > 300 && Dtch1 < 310}

Garfield Correction vs Attach Angle with 400 ns < Drift Time < 410 ns

Dpthch1:Adjdch1 {Mam > 0.030 && Mam < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dtch1 > 400 && Dtch1 < 410}

Garfield Correction vs Attach Angle with 500 ns < Drift Time < 510 ns

Dpthch1:Adjdch1 {Mam > 0.030 && Mam < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dtch1 > 500 && Dtch1 < 510}

Garfield Correction vs Attach Angle with 600 ns < Drift Time < 610 ns

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 > 9 && Dtch1 > 600 && Dtch1 < 610}

Garfield Correction vs Attach Angle with 700 ns < Drift Time < 710 ns

Dpthch1:Adjdch1 {Mam > 0.030 && Mam < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dtch1 > 700 && Dtch1 < 710}

Dpthch1:Adjdch1 {Mom > 0.030 && Mom < 0.600 && Chi2 < 100 && Nch1 > 0 && Nch1 < 9 && Dich1 > 0 && Dtch1 < 800}

Φ residual vs anodic wire

Resych1:Ydmch1 (Klype == 1 && Charge == 1 && Type >= 1110 && Nch1 == 2 && Chi2 < 100 && Mom > 0.230 && Mom < 0.240}

0.5

0.4

Entries 18903

200

180

Evaluation of Garfield correction effect on residual distribution

Map of Garfield correction effect on residual distribution vs Attach Angle vs Drift Time

Time dependence of Φ residual wire by wire

runvsresyvsy_ch1_0_w_00

runvsresyvsy_ch1_0_w_02

Drift Chamber Φ Side ... the TDC SIDE of the moon

- Garfield doesn't work properly for attach angle >45° (but now we have a correction map to add to Garfield !!!)
- No cluster on hit chamber reconstruction:
 - Wrong evaluation of Φ coordinate when the track crosses two cells (long drift time)
- Residual are stable in time but they are different from zero (500 µm – 1 mm)
 - Calibrations
 - Alignment

2.5

2

runvsreszvsy_ch1_1_w_02

2.5_F

2

Entries 584632

Entries 608430

ويعدده والمراجعة

10000 12000 14000 16000

runvsreszvsy_ch1_1_w_03

2.5p

2

1.5

0.5

-0.5

-1.5

-2

-2.5

4000 6000 8000

