

l tried to see if Hyp2006 analysis is "cured" with newest reconstruction program FIDARC604 (December production)

The prologue PLB 622

- $-B_{\Lambda}$ (MeV) for the different "observed" peaks
- #1 -10.94 ± 0.06
- $\pm 2 -8.4 \pm 0.2$
- #3 -5.9 ± 0.
- $\#4 -3.8 \pm 0.1$
- $\#5 16 \pm 0.2$
- #6 0.21 \pm 0.06
- #1 21±02

resolution 0.55 MeV (fixed and determined by an "ad hoc" fit on the S-state with "dedicated" cuts). These results were obtained using data reconstructed by FIDARC v5lland with

only 2 of 3 12C targets (target | and 8) due to problem on alignment....

The prologue HYP2006

Hyp2006 analysis "opened" a discussion about the lp level splitting w.r.t. PLB results

3

¹² _AC is now analyzed with our latest reconstruction program. Optimized selection criteria

JOW

03/19/08

5

1	1	Yieldgausl	239.87	23.840	-0.49180E-C	03 0.273	25E-02
	2	Peak Gausl	-12.236	0.47437E	-01 -0.341808	E-03 0.2	28434E-01
	3	Sigmagaus	0.3952.8	0.486	27E-01 -0.564	+57E-03	0.14234E-01
	4	Yieldgaus2	180.14	19.719	0.89504E-04	F 0.10490	DE-OI
	5	Peak Gaus2	11.191	0.10310	0.10370	0.14855E	-01

6

l Yieldgausl	0.00000	E+00 ca	onstant		
2 Peak Gausl	-12.400	consta	nt		
3 Sigmagaus	0.58502	0.64	H366E-01	0.30734E-02	0.11966E-C
4 Yieldgaus2	0.00000)E+00	constant		
5 Peak Gaus2	-11.300	consta	nt		
6 Yieldgaus3	0.00000)E+00 (constant		
7 Peak Gaus3	-10.900	consta	ant		
8 Yieldgaust	0.00000)E+00	constant		
9 Peak Gaust	-3.8000	cons	tant		
10 Yieldgaus5	0.00000)E+00	constant		
Peak Gaus5	-0.60000	cons	tant		
12 Yieldgausb	0.00000	E+00 (onstant		
13 Peak Gausb	-1.2700	consta	nt		
14 Yieldgaus7	777.44	87.510	-0.1285	0E-02 -0.1395	56E-01
15 Peak Gaus7	-0.39336	0.931	23E-01 C).13444E-03 -	0.2.3781
16 Yieldgaus8	181.36	32.793	-0.10311E	-02 -0.45736	E-01
17 Peak Gaus8	0.94905	0.11131	-0.2166	alE-03 0.3312	5E-01
18 Yieldgaus9	308.86	61.734	0.292	84E-03 0.32	879E-01
19 Peak Gaus9	-1.6274	0.22913	0.229	913 0.2.800)E-02

L. Benussi

Next steps:

 Make as soon as possible a new production without alignment
Give up with carbon hyper-nuclear spectroscopy