DA\PhiNE Exotic Atom Research Results and Future Perspectives

Johann Zmeskal for the DEAR Collaboration

The DEAR Collaboration

LNF-INFN, Frascati IMEP-ÖAW, Vienna IFIN – HH, Bucharest INFN, Trieste RIKEN Univ. Fribourg Univ. Neuchâtel Univ. Tokyo Univ. Victoria Caltech

DA PNE Exotic Atom Research Results and Future Perspectives

Contents

- Introduction
- DEAR Setup
- Kaonic Nitrogen
- Kaonic Hydrogen
- > A New Detector Concept
- Future Program

Goal of DEAR

A ~ 1% measurement of the \mathbf{K}_{α} line shift and a ~ 5% measurement of the K_{α} line width in kaonic hydrogen and the first measurement of the K_{α} line shift and width in kaonic deuterium

Kaonic Hydrogen - Cascade

As the kaon interacts strongly with the nucleus, the 1s energy level is both shifted and broadened

The energy shift ε and the width Γ of the 1s level can be directly related to the complex Kaon-proton scattering length through the

Deser-Trueman Formula S.Deser et al., Phys.Rev.96 (1954) 774.

$$\epsilon_{1s} + i/2 \Gamma_{1s} = 2 \alpha^3 \mu^2 a_{K^- p} = 412 a_{K^- p}$$

- α = fine structure constant
- μ = reduced mass of K⁻p
- a_{K⁻p} = complex K⁻p scattering length

DEAR Setup - Shielding

Cryogenic Hydrogen Targetworking point:T = 23 K, P = 1.82 barhydrogen density:3.1% of LHD, 2.2 g/l

Cryogenic Hydrogen Target Cell

"low mass construction"

- Volume: 1150 cm³ Weight: 410 g
- Materials: side wall entrance window grid structure mounting ring top plate
- 75µm Kapton 125µm Kapton glass fiber reinforced epoxy aluminum aluminum

Permeation rates: hydrogen 5.10⁻⁵ mbar.l/s @ 295 K nitrogen 1.10⁻⁶ mbar.l/s @ 295 K for T < 100 K: < 5.10⁻⁹ mbar.l/s (H₂, N₂)

DEAR Cryogenic Target Cell

DEAR Hydrogen Target

pressure, temperature stability Oct. 30 – Nov. 8, 2002

DEAR CCD Detector 16 CCD-chips with active area 100cm²

- Resolution:
 - thermal noise FWHM of about 15 eV
 - energy resolution at 5.9 keV (Mn Kα line) 136 eV (to be compared with silicon intrinsic Fano resolution of 128 eV, thermal noise included)
- Linearity: about 10⁻⁴
- Stability: fluctuations below 4 eV/month
- Charge transport inefficiency: ~10⁻⁶

Kaon Monitor – beam conditions

Kaons/mips = 0.034

Kaons/mips = 0.47 (scrapers and KM shielding) Kaons/mips = 2.28 (new optics)

Kaon Monitor – stability monitor sensitivity to the I.P. shift in z

Kaonic Nitrogen

integrated luminosity 10 pb⁻¹

T = 85 K, P = 1.01 bar, density = 4.4 g/l

Kaonic Nitrogen, 10 pb⁻¹

2200 events 4.6 keV 5200 events 7.6 keV

DEAR CCD Arrangement

Total of 16 CCD-55s, active area 100 cm²

EXA02 / JZ

Kaonic Nitrogen; sum of A-CCDs

1200 events 4.6 keV 2800 events 7.6 keV

Kaonic Nitrogen,

comparison of different data sets for K⁻N 4.6 keV / 7.6 keV

K⁻N	4.6 keV	7.6 keV
All	2200 +/- 320	5200 +/- 300
Α	1200 +/- 250	2800 +/- 240
D	1000 +/- 250	2400 +/- 240
UP	1400 +/- 270	3000 +/- 260
DOWN	800 +/- 240	2200 +/- 230 (* two CCDs

in good agreement with MC simulation

less)

Kaonic Nitrogen Physics

- Background determination for kaonic hydrogen
- Determination of the yield of transitions with a precision better than 10%
- Mass of the kaon as a test measurement better than 200 keV

Kaonic Hydrogen, Luminosity integrated luminosity; total 29 pb⁻¹

from Oct. 30 up to Nov. 23, 2002

Kaonic Hydrogen

integrated luminosity: 20 pb⁻¹

Kaonic Nitrogen, 10 pb⁻¹

2200 events 4.6 keV 5200 events 7.6 keV

Kaonic Hydrogen

1800 events in 6.3 keV-region: 500 events Fe + 1300 events KH

Kaonic Hydrogen, 20 pb⁻¹ Monte Carlo simulated spectrum

EXA02 / JZ

X-ray energy (keV)

Kaonic Hydrogen, 80 pb⁻¹ Monte Carlo simulated spectrum

Next Steps of the DEAR Scientific Program

- # a kaonic deuterium measurement
- # a kaonic helium measurement
- # to measure the kaon mass

a JRP within FP6 will be started to develop a triggerable low energy x-ray detector

Kaon mass measurement

