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Abstract

The analysis method developed for kaonic nitrogen X-ray data obtained at the DAFNE electron–positron collider of Frascati

National Laboratories using Charge-Coupled Devices (CCDs) in the DEAR experimental setup is described. Background events could

be highly rejected by this analysis procedure. Three sequential X-ray lines from kaonic nitrogen transitions, showing good energy

resolution, could be clearly identified, and the yields measured for the first time.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The DEAR (DAFNE Exotic Atom Research) experi-
ment at the DAFNE f-factory of Frascati National
Laboratories is based on the detection of kaonic atom X-
rays. Low absolute line yields and high background
radiation in the electron–positron collider environment
pose a serious experimental challenge. A new analysis
method had to be developed for extracting accurate X-ray
information from the CCD detectors, because the pre-
viously employed analysis techniques [1,2] were not
e front matter r 2005 Elsevier B.V. All rights reserved.
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sophisticated enough to be successfully employed for the
DEAR data evaluation.
The main goal of the DEAR scientific program is to de-

termine isospin-dependent KN scattering lengths by measur-
ing the shift and the width, due to the strong interaction, of
the 1 s state in kaonic hydrogen and kaonic deuterium [3].
In the first stage of the DEAR program, the measure-

ment of kaonic nitrogen was performed [4] with the aim to
study machine background and setup performance, since
the yields of kaonic nitrogen transitions are much higher
than those of kaonic hydrogen. The possibility of precisely
determining the charged kaon mass by studying the kaonic
nitrogen atom was also explored in the preliminary
measurement [5]. Three sequential X-ray lines of the
kaonic nitrogen spectrum at 4.6, 7.6, and 14.0 keV
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(corresponding to the 7! 6, 6! 5, and 5! 4 transi-
tions) were clearly identified and their yields measured for
the first time [4].

In this paper, we give a detailed description of the
analysis method applied to the CCD X-ray data. Section 2
describes the CCD analysis procedure, recalling briefly the
characteristics of this detector and the features of X-ray
events. In Section 3, the energy spectra obtained from the
analysis are shown. In Section 4, the technique to
determine the kaonic nitrogen transition yields is described.
Conclusions are drawn in Section 5.
2. CCD analysis procedure

2.1. CCD X-ray detectors

The DEAR experimental setup is described in Ref. [4].
Charge-Coupled Devices (CCDs), which are sensitive to
low-energy (below 20 keV) X-rays, were used as detectors.
CCDs have a large number (1152� 1242) of small-size
pixels (22:5� 22:5mm2). CCDs have unique capabilities of
background rejection, high energy resolution, good detec-
tion efficiency, and intrinsic position resolution.

Identification of X-ray events and determination of their
energies are achieved by taking advantage of the specific
CCD features [1]. On one hand, photoelectrons produced
by a low-energy X-ray are completely confined within the
depletion layer in a few pixels (usually p2). Thus their full
energy can be measured. On the other hand, minimum
ionizing particles (MIPs), which are the largest background
for DEAR, and X-rays above 20 keV penetrate the
depletion layer and create electron-hole pairs in the field-
free region, where they spread over many pixels. Thus, only
the energy deposit in or near the depletion layer, a fraction
of the total energy, can be collected and read out.

A CCD image with events attributed to X-rays and
background events from MIPs or g-rays is shown in Fig. 1.
Clusters consisting of one or two pixels are recognized as
X-ray events, those with more hit pixels constitute the
background. X-ray energy spectra are constructed via
selection using this X-ray definition which will be
corroborated in Chapter 3.1.
Fig. 1. CCD image. The grey scale is proportional to energy. MIPs or g-
rays create large-size events. Low-energy X-rays mainly create small-size

events (one or two pixel hits).
2.2. Event definition via noise threshold determination

Even if a pixel was not hit during the exposure time, a
charge content due to dark current from CCD readout is
stored in such pixels. It can be seen as a Gaussian noise
peak in the very-low-energy region of the energy spectrum.
The peak location defines the offset, which is subtracted
from each energy spectrum.
An event is then defined on the basis of the hit pixels

whose signal is larger than a noise threshold, the remaining
pixels being noise pixels. A cluster of hit pixels surrounded
by only noise pixels is counted as one event, the energy of
which is the sum of the hit pixels energies and whose size is
defined by the number of hit pixels. Single-pixel events are
size 1 events, double-pixel events are size 2 events, etc. In
Fig. 2, several types of events are shown. For size X2
events, events with energy higher than the upper limit of
the ADC channels (4096 in a 12-bit ADC) are possible as
the pixel contents get summed up.
The determination of the noise threshold is an essential

requirement in the analysis procedure, since it determines
event size, hence X-ray detection efficiency, energy resolu-
tion, and capability of background rejection. Several
methods of noise threshold determination have been
reported: see Refs. [2,6].
If an X-ray creates a double-pixel event, in which one of

the two pixels has a larger fraction of signal and the other is
registered as a noise pixel, this double-pixel event is
wrongly selected as a single-pixel event, thereby resulting
in a low-energy tail on an X-ray peak.
To minimize such misidentification of the event size, the

noise threshold must be set to a small value, close to the
readout noise fluctuations. If, however, this value is too
small, a noise pixel might be selected as a hit pixel.
Assuming that noise in the eight noise pixels surrounding a
single-pixel event has a Gaussian distribution with mean
value equal to 0 and standard deviation s, the chance for
this event to be selected as a single-pixel event is given by

pðEthÞ ¼
1ffiffiffiffiffiffi
2p
p

s

Z Eth

�1

e�E2=2s2 dE

� �8

(1)

where Eth is a threshold value. Fig. 3 shows pðEthÞ plotted
as a function of Eth=s. When Eth=s is over 3, the
Fig. 2. Definition of events. One event is defined as a group (cluster) of

connected hit pixels that are surrounded only by noise pixels. Events are

named according to the number of pixels in a cluster.
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(a) (b)
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Fig. 4. Signal loss during transfer: (a) column transfer and (b) row

transfer before the charge-transfer correction; (c) column transfer after the

charge-transfer correction. Eðnc; nrÞ is the signal in the pixel of column nc
and row nr.

Fig. 5. X-ray energy resolution as a function of energy. Function (2) was

used for the fit. After applying the charge-transfer (c–t) correction, the

energy resolution is improved by about 10%.

Fig. 3. Probability for noise pixels not to be selected as hit pixels as a

function of the threshold. The horizontal axis gives the noise threshold in

units of standard deviation. The noise peak is assumed to be a Gaussian

function with standard deviation s.
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probability for the single-pixel event to be misidentified as
a double-pixel event is below 1%.

Threshold is determined run by run from the noise peak
width, and is set at Eth=s ¼ 324. Contribution of the low-
energy tail on an X-ray peak is found to be only 0.4%.
Thus, the effect of the low-energy tail is negligible.

2.3. Corrections for charge-transfer loss and energy

resolution

Signals (charges) stored in a pixel are read out pixel by
pixel when they are successively transferred out of the
CCD. There is a small charge loss during the transfer. To
study the dependence of a line position on the signal loss,
the Zr Ka line from a Zr foil irradiated by an X-ray tube
was fitted with a linear function. In the column transfer,
signals decrease as the column number increases, as shown
in Fig. 4(a), whereas the row transfer shows much less
charge loss, as shown in Fig. 4(b). After the correction for
charge-transfer loss in the column transfer, there is no
significant dependence on the column number, as shown in
Fig. 4(c).

In a CCD, the energy resolution DE (FWHM), plotted
as a function of energy E in Fig. 5, can be fitted with the
function:

DE(FWHM) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bE

p
(2)

where a and b are parameters. The average energy
resolution, after applying the linear charge-transfer correc-
tion, shows a 10% improvement.

2.4. Defect pixel rejection

Those pixels that have signals uncorrelated to incident
particles are called ‘‘defect pixels’’. They are created during
the chip fabrication or from radiation damage. Defect
pixels with energy above �1 keV (ADC channel 200) and a
high hit rate are rejected because they may create artificial
X-ray peaks.
The position distribution of hit pixels is expected to be

uniform, thus the defect pixels may be selected by position
analysis of each hit pixel. If a specific pixel shows a high hit
rate, it is defined as a defect pixel.
Fig. 6 shows the hit rate of single-pixel events. Almost all

the pixels have less than 4 hits, thus those pixels with at
least 10 hits are defined as defect pixels.
To check whether the defect pixels are properly rejected,

projections of the hit-pixel positions on columns/rows are
plotted in Fig. 7, before and after defect-pixel removal.
Spikes caused by events from defect pixels can be
completely removed. Typically, a fraction of less than
10�6 pixels were selected as defect pixels.
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Fig. 6. Number of hit pixels selected as single-pixel events as a function of

the number of hits/pixel in 3850 runs. Pixels in which over 10 hits occurred

are removed as defect pixels.

(a) (b)

(d)(c)

Fig. 7. Defect pixels are included in the distributions of counts of Figs.

(a), (b). The vertical axis gives the number of counts in one column/row

Snr=ncNðnc; nrÞ. Events due to defect pixels are seen as spikes. Removing

the defect pixels also removes spikes, see Figs. (c), (d).

Fig. 8. The relationship between event size and deposited energy. The

horizontal axis gives the event size and the vertical axis the ADC channel

(energy deposit). The vertical axis is plotted up to twice the upper limit of

ADC channels (up to about 35 keV). The gray scale gives the number of

events. The central blob is due to minimum ionizing particles which

penetrate the depletion layer. X-rays mainly create size p2 events. The

majority of the MIPs are well separated from X-ray events.

(a) (b)

(d)(c)

Fig. 9. X-ray spectra: (a) single-pixel events, (b) double-pixel events, (c)

size 3 events, (d) size 4 events. The bumps seen in the spectra of size X 2

events are due to MIPs.
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3. Results of the CCD analysis

3.1. Background rejection capability by cluster analysis

By applying the procedure described in Section 2, energy
spectra of cluster events were produced. To show how
events due to MIPs are rejected, the relationship between
event size and energy deposit is plotted in Fig. 8.

A large concentration of events which appears as a blob
at the center of the figure is due to MIPs penetrating the
CCD depletion layer. The MIPs may be electrons or
positrons lost from the beams and as well originating from
the electromagnetic cascade initiated in the setup materials.
The events due to X-rays are mainly size p2 events. The
majority of the MIPs are well separated from X-rays.
X-ray spectra (counts vs. channels) of size 1–4 events

are plotted in Fig. 9. The background shape for single-pixel
events is exponential, while that for size X2 events has a
bump created by MIPs. MIPs create preferentially size
X4 events, as seen in Fig. 8 and indicated by the large
peak in Fig. 9(d). When only single-pixel events are
considered, for instance as in Ref. [2], a better background
rejection is expected. Since the probability of double-pixel
events is high (about 40%), these events were also
analyzed.
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Fig. 12. X-ray spectrum of double-pixel events extended up to twice the
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3.2. X-ray spectra of single- and double-pixel events

The ADC gains were adjusted to place the Zr Ka line at
the same channel in the spectrum of each CCD. The
spectra of single- and double-pixel events are plotted in
Figs. 10 and 11. The kaonic nitrogen transitions are clearly
seen. The signal/background ratio for the 6! 5 peak is
almost the same in both spectra. As well, the widths of the
Zr Ka peaks are consistent in both spectra. Consequently,
spectra of single- and double-pixel events can be added.

The spectrum of double-pixel events, extended up
to twice the upper limit of ADC channels, is plotted in
Fig. 12. The region from channels 3600 to 4000 contains
ADC overflows which occurred in some CCDs, where the
overflow started at a lower channel. Ag K peaks, coming
from the adhesive material used to bond the CCD chips [7],
are seen in channels 4400 and 5000. These Ag peaks were
Fig. 10. X-ray spectrum obtained with only single-pixel events (events

below ADC channel 200 were not plotted). The kaonic nitrogen

transitions are clearly visible. X-ray lines from setup materials are also

indicated.

Fig. 11. X-ray spectrum obtained with only double-pixel events (events

below ADC channel 200 were not plotted). The kaonic nitrogen

transitions are clearly visible. X-ray lines from setup materials are also

indicated.

upper limit of ADC channels. The region from channels 3600 to 4000

contains ADC overflows. There are prominent peaks in channels 4400 and

5000, which can be attributed to Ag K lines.

Fig. 13. The relationship between channel and energy. The fit errors are

too small to be shown.
used as calibration lines for the upper part of the energy
scale.

3.3. Energy calibration

To make the conversion from channel to energy, the
known energies of Ka lines in Si, Ca, Zr, and Ag, taken
from Ref. [8], were used. The Zr and Ag peaks were fitted
with two Gaussians representing the Ka1 and Ka2 lines,
since these lines can be disentangled. The observed linear
energy dependence, plotted in Fig. 13, results in an energy
calibration of better than 1 eV accuracy.

3.4. X-ray energy spectra

Fig. 14 shows the energy spectrum obtained by adding
single- and double-pixel events.There are three sequential
X-ray lines corresponding to transitions between levels of
kaonic nitrogen. The kaonic nitrogen peak at 7.6 keV,
corresponding to the 6! 5 transition, is observed clearly.
There are two other kaonic nitrogen peaks at 4.6 keV,
corresponding to the 7! 6 transition and 14.0 keV,
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Fig. 14. X-ray energy spectrum with single- and double-pixel events added

up.

Fig. 15. Fit of the 7! 6 transition peak. The kaonic nitrogen peak and

the Ti Ka and Ti Kb peaks are clearly separated by the fit. The relative

intensities of the Ti Ka and Ti Kb peaks and of the Ca Ka and Ca Kb
peaks were left as free parameters in the fit.

Table 1

Measured number MX of kaonic nitrogen X-ray events for each transition

and corresponding signal/background ratio (S/B)

Transition MX ð�10
3Þ S/B ratio

7! 6 3:31� 0:69 1/15

6! 5 5:28� 0:38 1/10

5! 4 1:21� 0:32 1/37
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corresponding to the 5! 4 transition, which partially
overlap the Ti Ka and Sr Ka peaks, respectively.

As an example of the fit, the energy spectrum of the
region from 3.0 to 6.0 keV is plotted in Fig. 15. The
spectrum was fitted with 5 Gaussians for the Ca Ka, Ca
Kb, Ti Ka, Ti Kb lines, and the kaonic nitrogen 7! 6
transition. The fit was performed leaving the relative
intensities of the Ka and Kb peaks as free parameters,
because in this low-energy region the X-ray attenuation in
nitrogen gas and target window has a strong energy
dependence. The background was fitted with a quadratic
function. The measured numbers MX of kaonic nitrogen
X-ray events for each transition are given in Table 1.
4. Determination of X-ray yields

The global efficiency eX of having a kaonic nitrogen X-
ray in a CCD is given by the kaon stopping efficiency in the
target gas and the solid angle seen by the CCDs, assuming
a 100% yield for the kaonic nitrogen transitions. The
global efficiency eX at the energies of the kaonic nitrogen
transitions was simulated using GEANT codes [9] and a
code based on Ref. [10]. The X-ray attenuation in the
nitrogen gas and the target window, as well as the thickness
of the CCD depletion layer (intrinsic efficiency) were taken
into account and put in the simulation. The results of the
simulation are given in Table 2. Changing the f-
momentum in the simulation and making a comparison
with experimental data taken with several degrader
configurations, a 10% error was evaluated for the results
of the simulation.
In this analysis method, only single- and double-pixel

events were considered. However, X-rays can create size X
3 events with a non-negligible probability. The probability
RX to form single- or double-pixel events can be written as

RX ¼
NSþD

NAll
(3)

where NSþD is the number of X-rays which form single- or
double-pixel events, and NAll is the number of X-rays in
all-size events. The values of RX were measured with an X-
ray tube at the energies of the kaonic nitrogen transitions,
and are reported in Table 2.
CCD data contain events from both X-rays and MIPs.

X-ray events cannot be detected if a pixel was already hit
by a MIP. The number of X-ray events which can be
detected can be simply evaluated from the number of non-
hit pixels. During data taking, ð2:7� 0:9Þ% of all pixels
were recorded as hit pixels, and thus the fraction of X-rays
which can be detected is given by

Rdetect ¼ 1� ð2:7� 0:9Þ � 10�2

¼ ð9:73� 0:09Þ � 10�1. ð4Þ

This is the correction factor for multi-hit pixels due to
MIPs.
The DEAR kaon monitor [11] counts the number of

charged kaons NK� produced at the DEAR interaction
point, with an uncertainty of about 3%. The estimated

number of kaonic nitrogen X-ray events NX (assuming a
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Table 2

Global efficiency eX for detecting a kaonic nitrogen X-ray and probability

RX to form single- or double-pixel events

Energy eX (�10�4) RX

4.6 5.54 0.95

7.6 7.29 0.87

14.0 1.99 0.70

Table 3

Numbers of kaonic nitrogen X-rays NX obtained by the simulation

(assuming a 100% yield) and experimentally determined yields Y with

their statistical (stat.) and systematic (syst.) errors [4]

Transition NX ð�10
3Þ Y ð�10�2Þ

7! 6 7:97� 0:79 41:5� 8:7 (stat.) � 4:1 (syst.)

6! 5 9:59� 0:96 55:0� 3:9 (stat.) � 5:5 (syst.)

5! 4 2.10 � 0.21 57:4� 15:2 (stat.) � 5:7 (syst.)
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100% yield for each transition) can be written as:

NX ¼ NK�eXRXRdetect. (5)

For each transition, the NX values are calculated using (5),
where NK� ¼ 1:555� 107 charged kaons, registered in
10:8 pb�1 of integrated luminosity used for the analysis, eX
and RX are reported in Table 2, and Rdetect is given by (4).
The results are reported in Table 3.

The yields Y of each transition are then defined as the
ratio MX=NX, where MX is the measured number of kaonic
nitrogen X-rays for each transition reported in Table 1.
The yields of the three kaonic nitrogen X-ray transitions
are reported in Table 3. The systematic error on the yields
is due to the 10% error taken into account in the Monte
Carlo simulation.
5. Conclusions

The CCD analysis method applied to the kaonic
nitrogen X-ray data taken by the DEAR experiment at
the DAFNE collider, was described. Single- and double-
pixel events were selected, and used for the analysis. The
analysis procedure clearly identified a pattern of three X-
ray lines from kaonic nitrogen transitions. The correspond-
ing yields could be measured for the first time.
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