

B Physics at the DØ Experiment

Harald Fox, Northwestern University, for the DØ Collaboration

<u>Content:</u> Improved Tracking Performance B Cross section B Lifetimes B Flavor Tagging Performance

Photon 2003, Frascati

April 8

Improved Tracking

Since low P_T tracks are very important for B physics, tracking algorithm has been improved.

Improved performance for low P_T tracks and tracks with large impact parameter (Ks, Λ).

Silicon modules

X-Y vertex location of $\gamma \rightarrow e^+e^-$

Results with new Tracking

 $\chi _{\rm C} \rightarrow J/\psi \gamma$

According to CDF Run I measurement:fraction of J/Ψ from $\chi_{c:}$ $(27.4 \pm 1.6 \pm 5.2)$ %Fit with fix $\varepsilon_{\gamma} \approx 0.4\%$ with $p^{\gamma}_{T} > 1$ GeVbut float reExpect ~ 80 eventsFit with fix

Fit with fixed $M\chi_{c1}$ - $M\chi_{c2} = 46 \text{ MeV}$ but float relative contributions

Cuts:

- 1. Track $p_T > 2.0$ GeV on tracks from J/ Ψ
- 2. $p_T^{\gamma} > 1.0 \text{ GeV}$

Harald Fox, Photon 2003

B Jet Cross Section

Measured in Run I: 2-3 times higher in the central region than predictions Data:

Strategy: Measure μ +jet cross-section Extract b-content using P_T^{Rel}

Data selection & kinematic cuts:

- $p_T^{\mu} > 6 \text{ GeV/c, } |\eta^{\mu}| < 0.8$ (Muon P_T measured in muon system only)
- 0.5 cone jet
- $|\eta^{jet}| < 0.6$
- $E_t^{corr} > 20 \text{ GeV}$
- δR(jet,μ)<0.7

B Jet Cross Section

Obtain B jet cross section from μ + jets cross section: Fit data to P_{T}^{rel} distribution of b-jets and background in bins of E_{T} (cannot distinguish $c \rightarrow \mu X$ and decays in flight so only fit b, non-b).

Example: P_{T}^{rel} for jets with $20 \text{ GeV} < E_{T} < 25 \text{ GeV}$

Northwestern University

Harald Fox, Photon 2003

B fraction as a function of Jet E_{τ} :

B Jet Cross Section

- Deconvolution of jet energy resolution.
- Jet Energy Scale is the dominant error.
- Uncertainty:
 - b quark mass
 - Renormalization / factorization scale
 - pdf's
 - Fragmentation function (NLO + Pythia)

Consistent with Run I result

Harald Fox, Photon 2003

For now focusing on $J/\Psi \to \mu^+\mu^-$ sample

- Useful for calibration
- Easy trigger and provides lots of B's

Inclusive B Lifetime

Fit the Λ_B distribution in sideband windows to extract the background shape (g+g+e+c).

Fit the data in the J/ψ signal window to background + prompt production (g+g) + exponential with fixed resolution.

Dominant Uncertainty:

$z > = 1.561 \pm 0.024$ (stat) ± 0.074 (sys) ps
> = 1.564 ± 0.014 ps (PDG)
fraction: 17.3 ± 0.5 %

Correction factor	16 μm 0.053 ps
Fitting Bias (MC)	13 μm 0.043 ps

<1

Charged B Lifetime

Fully reconstructed B so no need for a correction factor:

$$\lambda = L_{xy} \frac{M(B)}{P_T(B)}$$

The background shape is extracted from the high mass sideband. The data is fitted to background + prompt production (g+g) + exponential with fixed resolution + 12% residual B contamination.

<τ>=1.76±0.24 (stat) ps <τ>=1.674±0.018 ps (PDG)

Flavor Tagging

$$Q = \frac{\sum p_{T,i} * q_i}{\sum p_{T,i}}$$

Use charged B sample to determine the flavor tagging performance. Soft Muon Tag: Muon $\Delta R > 2.0$ from B⁺ Muon $P_T > 1.9$ GeV/c Charge of μ with highest $P_T \Rightarrow$ B-tag

Jet Charge Tag: Choose tracks opposite of the reconstructed B⁺ close (2cm) to the primary vertex Only events with |Q|>0.2 are used as tags

 $N_{correct} + N_{wrong}$ ϵ : Efficiency = -Significance of a $N_{correct} + N_{wrong} + N_{notag}$ mixing measurement: proportional to εD^2 N_{correct} – N_{wrong} D: Dilution= N_{correct} + N_{wrong} Jet Charge Tag Soft Muon Tag N_{right} = 66 N_{right} = 13 raw numbers $N_{wrong} = 5$ $N_{wrong} = 48$ ε = 55.0 ± 4.1% $\epsilon = 8.2 \pm 2.2\%$ D = 21.1 ± 10.6 % D = 63.9 ± 30.1% corrected for background $\epsilon D^2 = 2.4 \pm 1.7\%$ $\epsilon D^2 = 3.3 \pm 1.8\%$

Towards Sin(2 β)

D0 RunII Preliminary

Northwestern University

Harald Fox, Photon 2003

- DO has made significant progress in tracking and understanding of the data.
- We have good results on basic quantities such as masses, lifetimes, cross sections.
- We start to understand flavor tagging.
- More interesting things to come:
 - B_s mixing
 CP violation in B_d
 CP violation in B_s

Charged B

 $B^{+-} \rightarrow J/\Psi K^{+-}$ Events / (40 MeV/c DØ Run II Preliminary $M = 5.265 \pm 0.009 \text{ GeV/c}^2$ $\sigma_{_{M}} = 0.076 \pm 0.008 \text{ GeV/c}^2$ 60 Data Fit 30 20 10 84 4.6 4.8 5.2 5.4 5.6 5 5.8 $M_{\mu^{\dagger}\mu^{\prime}K^{2}}$ (GeV/c²)

Cuts (J/ψ) :

- 1. Muons with opp. charge
- 2. p_T(μ) > 2.0 GeV
- 3. SMT hits ≥ 1
- 4. χ^2 on J/ ψ vertex < 10
- 5. 2.8 < $m(J/\psi)$ < 3.3

