
DESIGNING A COMMON FOUNDATION CLASS FOR
ACCELERATOR CONTROL SYSTEM WITH UML

Jianjun Hu
IMP-CAS, Lanzhou, China

jjhu@eudoramail.com

Abstract

Through analyzing lots of class model
suggested by experts in software field and
frequently used in many mature software,
combining with years programming experiences,
the author design a hardware related class model
which is expected to be a commonly used
foundation class for OO based software
development for particle accelerator control
system. Java language will be used to be the
programming language and UML (Unified
Modeling Language) will be used to illustrate the
architecture of the classes framework in this
paper.

Keywords: Java, OO, class, UML

1 INTRODUCTION

OO (Object-Oriented) is an advanced

programming technique and has been accepted by
most programmers who work for the particle
accelerator control systems. The classes are the
foundation stones of OO-based software
development. It is one of the most critical issues
that how to analyze and organize the hardware
related classes. In this paper we will address
some common issues for establishing a hardware
related class model. In this model, four thinkable
aspects were considered, which are corresponded
to the holistic layout, how to keep only one
instance of a class, how to forward a request and
how to implement request.

2 MODELING

2.1 Holistic Layout

When we begin to design a common class
model for all the installation of the accelerator
control system, we discover that it is necessary
that some parts of an algorithm are well defined
and can be implemented in the base class, while
other parts may have several implementations
and are best left to derived classes. Another main
theme of this idea is that there are some basic
parts of a class that can be put in a base class so
that they do not need to be repeated in several
subclasses.

The following codes present this idea.

public abstract class Installation {
private String variable;

 public Installation() {
}

 abstract void commonDo();
 public void setVariable(String variable){
 this.variable=variable;
 }
 public String getVariable(){
 return variable;
 }
}

public class Magnet extends Installation
implements specificOperation{
 private String variable;
 public Magnet() {
 }
 void commonDo() {
 }
 public void specificDo(){
 }
 public void setVariable(String variable){
 this.variable=variable;
 }
 public String getVariable(){
 return variable;
 }
}

public interface specificOperation {
 void specificDo();
}

2.2 Keep Only One Instance of A Class

There are some occasions where we need to
make sure that there can be one and only one
instance of a class. For example, your system can
have only one magnet under the control of the UI
at one time. A better way is to create a class that
throws an Exception when it is instantiated more
than once. Let’s create our own exception class
for this case:

class SingleException extends runtimeException{
 public SingleException(){
 super();
 }
 public SingleException(String s){

 super(s);
 }
}

Note that other than calling its parent
classes through the super() method, this new
exception type doesn’t do anything in particular.
However, it is convenient to have our own named
exception type so that the compiler will warn us
of the type of exception we must catch when we
attempt to create an instance of Magnet. Let’s
write the related skeleton code of our Magnet
class; we’ll omit all of the other methods and just
concentrate on correctly implementing this idea.

public class Magnet extends Installation
implements specificOperation{
 .
 .
 static boolean instance_flag=false;
 public Magnet() throws SingleException{

if (instance_flag) throw new
SingleException(“only one”);

 else instance_flag = true;
 }
 public void finalize(){
 instance_flag = false;
 }
 .
 .
}

Remember that we must enclose every
method that may throw an exception in a try -
catch block when we use it.

In addition, another consequence of this
approach is that you can easily change it to allow
a small number of instances where they are
allowable and meaningful.

2.3 Forwards A Request

When we want to forward a request to a
specific module, it encloses a request for a
specific action inside an object and gives it a
known public interface. It lets you give the client
the ability to make requests without knowing
anything about the actual action that will be
performed, and allows you to change that action
without affecting the client program in any way.

class ConcreteCommand implements Command{
 private ActualOperation action;
 public ConcreteCommand

(ActualOperation ao){
 action=ao;
 }
 public void execute(){
 action.externalDo();
 }
}

class ActualOperation{
 public void externalDo(){
 System.out.println(“externalDo”);
 }
}

public interface Command{
 public abstract void execute();
}

2.4 Implements A Request

This section is used to separate the interface
of class from its implementation, so that either
can be varied separately. It is designed to separate
a class’s interface from its implementation, so
that you can vary or replace the implementation
without changing the client code.

abstract class Abstraction{
 protected OperationBridge imp;

public abstract OperationBridge
getImplementor();

}

class RefinedAbstraction extends Abstraction{
 public OerationBridge getImplementor(){
 imp=new ConcreteOperation();
 return imp;
 }
}

class OperationBridge{
 public void operationImp(int actionType){
 }
}

class ConcreteOperation extends perationBridge{
 public void operationImp(int actionType){
 if(actionType==1) //Operation1();
 if(actionType==2) //Operation2();
 }
}

The consequences of this structure are:

1. It is intended to keep the interface to your
client program constant while allowing you to
change the actual kind of class you display or
use. This can prevent you from recompiling a
complicated set of user interface modules, and
only require that you recompile the bridge itself
and the actual end display class.

2. You can extend the implementation class
and the bridge class separately, and usually
without much interaction with each other.
 The figure below is the class diagram for
the Magnet class (actually, the classes collection).
A visual UML tool Visual Paradigm for UML
was used to make this figure.

Although the source code of this class model is

made up of Java language, it can be transformed to
another Object-Oriented programming language such as
C++ which is also commonly used in software
development for particle accelerator control.

The whole source codes for this class model can’t be
presented here because of the limited paper space. If you
are interested in this topic, email provided at the title part
of this article is the best way for you to contact the author.

3 CONCLUSIONS

In the preceding sections we discussed common

foundation class for accelerator control issues. I hope it
can solve the matching problems during your
programming. To apply this class framework to actual
programming, practices are needed. With current model,
significant improvements in your programming for
accelerator control system can be achieved if you
accepted it . However, there are still many open problems
and research issues to be solved, especially in the ease-to-
use capability of this model——that is my current work.

4 ACKOWNLEDGEMENTS

The study was done when the author is at Control

Group, Electronic Department, INFN-LNL. The author
would like to thank Dr. Stefania Canella for her
enthusiasm assistance and guidance. I am grateful to all
the staff of Electronic Department leaded by Dr. Giorgio
Bassato for their support and help. They are Dr. Andrea
Battistella, Dr. Davide Carlucci, Dr. Alessandro Zanon et
al. Moreover, many enthusiasm Italian give me direct or
indirect help during I am at LNL. If I come out with their
name, it must be a long list.

5 REFERENCES

[1] http://java.sun.com
[2] Laura Lemay, Rogers Cadenhead, Teach Yourself
Java 2 In 21 Days, Second Edition.
http://www.java21days.com
[3] http://www.omg.org/uml

