
DEVELOPMENT OF GENERALIZED DEVICE LAYER FOR THE COACK SYSTEM

Masakatsu Mutoh, Yoshinobu Shibasaki and Isamu Abe*
Laboratory of Nuclear Science, Graduate School of Physics, Tohoku University

1-2-1 Mikamine, Taihaku-ku, Sendai 982-0826, Japan
*High Energy Accelerator Research Organization (KEK)

e-mail: mutoh@LNS.tohoku.ac.jp

Abstract
A generalized device layer for the COACK system has

been developed. Software architecture for accelerator
control systems commonly consists of three layers.
COACK is a generalized control kernel having highly
useful functions, and is installed in a middle-layer of the
three layers. In regard to the lower device layer, a unique
device layer has been developed that is adaptable to the
target control system under various conditions. In the
accelerator control system, PLCs or instruments using
GPIB are employed to control various accelerator
components such as magnet power supplies, RF
components, vacuum components, beam monitors, and so
on. If configurations of the accelerator components,
interface specifications and control procedures and
protocols could be standardized, a generalized device
layer could be constructed. In order to realize the
generalization of the device layer, XML is used to express
the control information for device layer as hierarchical
data. The device layer is installed automatically according
to its control information. Consequently, the developed
device layer can be applied to various control systems by
means of only rewriting files described the control
information in XML without any modifications.

1 INTRODUCTION
Software architecture for accelerator control systems

commonly consists of three layers: a human interface
layer such as an operation console, a control layer that
functions as a control manager in the control system and a
device layer that behaves like an active interface between
accelerator components and the control system. Since
adopting such a three-layer system provides a clear
definition of each function, it becomes possible to
distribute the control functions through a high-speed
computer network to realize an accelerator control system
at the most suitable scale. If generalized layers could be
developed and made available, it would eliminate the
need to design individualized programs for accelerator
control systems, shorten the time frame for development,
and reduce the overall development burdens, which
include construction budget and manpower. Moreover,
the generalized software would be used in many
universities and/or institutes undertaking large
experiments, so that it could be grown into more
sophisticated software in collaboration with researchers.
For these reasons, we have developed a generalized
device layer for accelerator control.

In order to design a generalized device layer, it is
important to document control information, such as
configurations of the accelerator components, interface
specifications and control procedures and protocols. We
employed XML (eXtensible Markup Language) to
express the control information. The control information
is structured as hierarchical data in XML, and can be
clearly shown in detail using the advantageous elements
of XML. A proper tool named “Driver builder” is
provided to make the XML document required in the
device layer. The XML document is simply generated
with basic control information entered from the display
window of the driver builder. IOC (Input/Output
Controller) works as a core of the device layer; when IOC
starts up, it loads the XML document. Driver objects
corresponding to each control action for accelerator
components are created; then, the initial interface
processes are executed in line with initialization
commands described in the XML document. The Driver
objects in IOC control the accelerator components.

COACK (Component Oriented Advanced Control
Kernel)[1][2] is a generalized control Kernel developed to
apply not only to accelerators, but to various other large
physics equipment, as well; it is mainly used in the
middle layer of the control system. Component-oriented
software technology is adopted, and each function of
COACK is designed as a software component. COACK
has spread gradually to universities and institutes through
applications such as controlling accelerators or large
experiments. Until the development of such a unique
device layer, adaptable to target control systems under
various conditions, enormous expenditures of time and
money were involved in the creation of such systems.
That generalized control software reduces development
burdens has been proven by the arrival of COACK. The
device layer we have developed can be used with
COACK as the middle layer; we expect that the
combination of COACK and the developed device layer
will be useful for the construction of flexible and effective
accelerator control systems.

2 STRUCTURE OF THE DEVICE LAYER
A block diagram of the device layer is shown in Figure

1. The device layer controls the accelerator components
such as magnet power supplies, RF components, vacuum
components, beam monitors, and so on; it consists of the
IOC and the driver builder.

The device layer supports widely-used PLCs and GPIB
devices as interfaces between the control system and the

Table 1: Element and attribute list in XML document.
Element Attribute Example

Driver
Interface DriverClass PLC/GPIB
 PLC
 InstrumentID YEW01
 IpAddress 130.34.61.97
 PLCType YOK.FA.E
Instrument GPIB
 InstrumentID HP01
 BoardNo 0
 GpibAddress 1
 Initialize *RST;:INIT:CONT ON
 NodeID ND01
Node DeviceClass Linac.Magnet.Q
 NodeName Q1
 PLC
 InstanceID INS01
 Property Current
 AccessMode Write/Read
 PropertyValue
 RelayAddress D00001
 DataType Binary+Sign
Instance BitLength 16
 RelayValue
 DeadBand 0.05
 RapidTime 1000 (mSec)
 RapidValue 0.1
 GPIB
 InstanceID INS02
 Property Voltage
 AccessMode Write/Read
 PropertyValue
 DeadBand 0.1
 Command :MEAS:CURR?

accelerator components. PLCs connected only with
Ethernet can be controlled right now. Recently, not only
measurement devices such as frequency counters and
precision digital multi-meters, but also power supplies for
magnets have been integrated as GPIB devices into
accelerator control systems.

Here’s how the system works. Control commands sent
from COACK in the middle layer are accepted and
processed by IOC, and are transmitted the accelerator
components through PLCs or GPIB devices. IOC in turn
observes accelerator operations, and informs COACK of
the accelerator’s operation status.

COACK possesses the control information on each
accelerator component; control information is also treated
as an XML document named “ClassInfo.xml”.
ClassInfo.xml is used to install a data cache in COACK
for temporally saving the control commands and
operation status messages from the accelerator. The driver
builder adds the information on PLCs and GPIB devices
to the information derived from ClassInfo.xml on the
accelerator components controlled by the device layer,
and generates the hierarchically structured XML
document.

2.1 Structure of the XML document
The relevant information can be expressed as a

hierarchically structured data by the nest function of
XML. Addition and rearrangement of attributes in the
element are flexible, therefore making it possible to add
new interfaces to the device layer.

The configuration of the accelerator components, the
interface specifications, and the control procedures and
protocols are described as the XML document.

The hierarchically or “tree”-type structured data is
composed of the following elements and attributes, as
shown in Table 1:

• Driver-element; root element.

Figure 1: Block diagram of the device layer.

• Interface-element; the attribute designates interface
type PLC or GPIB.

• Instrument-element; the attributes specify property
values of the PLC or GPIB device and initial
process commands in the case of GPIB devices.

• Node-element; the attributes show the accelerator
components controlled by the driver layer.

• Instance-element, the lowest element; the attributes
show contents of access commands to control the
accelerator components, and they designate various
control parameters needed to execute the commands.
The attributes also specify a relay address, a data
type, and a bit length of data in the case of PLCs.

 The lower elements inherit attributes of upper elements.
An example of the XML document generated by driver

builder is shown in Figure 2.

2.2 Driver builder
The driver builder that generates the XML document

consists of a main program to designate a particular
configuration of the accelerator components and two sub
programs to designate the interface specifications and
control commands for PLC and GPIB devices
respectively.

When the driver builder is executed, the main program
loads ClassInfo.xml, which describes all of the accelerator
components, and displays the configuration of the
components on a tree-view of a main window. Properties
of a selected component on the tree-view are shown on a
property list of the window. The component’s properties
are, for example, current, voltage, ON/OFF status, and so

<?xml version="1.0" encoding="Shift_JIS"?>
-<Driver>
 -<Interface DriverClass="GPIB">
 -<Instrument InstrumentID="HP1" BoardNo="0" GpibAddress="2" Initialize="*RST;:INIT:CONT ON">
 -<Node NodeID="ND01" DeviceClass="Linac.Gun" NodeName="Grid">
 <Instance InstanceID="INS01" Property="VoltRef" AccessMode="Write" PropertyValue="" DeadBand=""

 Command="VOLT ###"/>
 <Instance InstanceID="INS02" Property="Voltage" AccessMode="Read" PropertyValue="" DeadBand="5.0"

 Command="MEAS:VOLT?"/>
 <Instance InstanceID="INS03" Property="HvOnOff" AccessMode="Write" PropertyValue="HvOn"

 DeadBand="" Command="OUTP ON"/>
 <Instance InstanceID="*****" Property="HvOnOff" AccessMode="Write" PropertyValue="HvOff"

 DeadBand="" Command="OUTP OFF"/>
 </Node>
 </Instrument>
 </Interface>
 -<Interface DriverClass="PLC">
 -<Instrument InstrumentID="YEW1" IpAddress="130.34.61.97" PLCType="YOK.FA.E">
 -<Node NodeID="ND01" DeviceClass="Linac.Magnet.Q" NodeName="Q1">
 <Instance InstanceID="INS01" Property="CurrRef" AccessMode="Write" RelyAddress="D00004"

 DataType="Binary+Sign" BitLength="16" PropertyValue="" RelyValue="" DeadBand="" RapidTime=""
 RapidValue=""/>

 <Instance InstanceID="INS02" Property="Current" AccessMode="Read" RelyAddress="D00001"
 DataType="Binary+Sign" BitLength="16" PropertyValue="" RelyValue="" DeadBand="0.05"
 RapidTime="1000" RapidValue="0.1"/>

 <Instance InstanceID="INS03" Property="Output" AccessMode="Write" RelyAddress="I00001"
 DataType="Bit" BitLength="1" PropertyValue="On" RelyValue="$True" DeadBand="" RapidTime=""
 RapidValue=""/>

 <Instance InstanceID="*****" Property="Output" AccessMode="Write"
 RelyAddress="I00001" DataType="Bit" BitLength="1" PropertyValue="Off" RelyValue="$False"

 DeadBand="" RapidTime="" RapidValue=""/>
 </Node>
 </Instrument>
 </Interface>
 </Driver>

Figure 2: An example of the XML document (DriverInfo.xml).

Table 2: Method list of PLC and GPIB class.
Class Method Parameter Definition

Initialize Nothing Initialize PLC
ToPlc Property value

as variant
Transfer
command to PLC

Plc

ToCoack Changed
operation value
as variant

Transfer changed
operation value to
COACK

ToGpib Property value
as variant

Transfer
command to
GPIB

Gpib

ToCoack Nothing Read operation
value and transfer
it to COACK

on. In the next step, either PLC or GPIB is selected as the
interface correspondent to each property. Then the display
window is switched to sub windows for either PLC or
GPIB devices. In the sub windows, the attributes
concerning the Instrument-element and Instance-element
in Table 1 can be entered. Attributes entered in advance
are inherited by means of designating an InstrumentID for
the Instrument-element and/or for the NodeID of Node-
element. Finally, the attributes of the Instance-element are
entered, and the XML document named “DriverInfo.xml”
is generated. Anyone can design an XML document using
the driver builder tool; knowledge of XML grammar or
XML editor is not required.

2.3 IOC
IOC functions as the manager in the device layer,

controlling accelerator components by following
commands from COACK. As IOC starts up,
DriverInfo.xml is loaded, and driver objects equivalent to
each Instance-element are created from each driver class,
the PLC or GPIB class. The attributes of each element
correspond to the properties of each object. Each driver
object has methods, “ToPlc” and “ToGpib”, to execute
the commands for the accelerator components.
“ToCoack” is the method for transferring the operation
status from the accelerator components to COACK. The
differences between the interfaces, the differences
between the accelerator components and the differences
between the control protocols can be assimilated by the
properties of each driver object. Table 2 shows methods
of the PLC and GPIB classes.

The allocations of the driver objects and data flows in
IOC are shown in Figure 3. Since COACK is component-
oriented software, COM/DCOM is used to communicate
between the components. The commands sent from
COACK are received as DCOM events in IOC. The
received command is checked to determine the target
driver object, and the command is delivered to ToPlc or
ToGpib of the target object. Concerning a “read”
operation on PLC, if an operation value of the accelerator
components exceeds a permissible range set up in
advance, PLC generates to IOC an event including
information such as an identification code on the event

Figure 3: Data flow in the device layer; (a) is for PLC, (b) is for GPIB

source and the changed operation value. Then IOC sends
the event information to ToCoack of the related driver
object, and the operation value of the accelerator is
transferred to COACK. Concerning GPIB operation, a
“write” operation command received from COACK is
processed the same as with PLC, but a timer event is used
instead of an event from the interface in the “read”
operation. The GPIB driver object is driven by timer
events generated at intervals of designated time; its
ToCoack method reads the operation value of the
accelerator components. The ToCoack method of GPIB
driver object then compares the new operation value with
the last one, and if there is a discrepancy between the two
values, the new operation value is transferred to COACK.

 A product named “Fa-Engine”[4] offered by Robotic
Ware Company is used to communicate between IOC and
PLC. The product is an ActiveX component for Visual
Basic. The library, NI-488.2M[5], offered by National
Instrument is also used for GPIB communication.

3 CONCLUSION
Our generalized device layer was developed using an

XML document, which makes it possible to construct an
accelerator control system with high flexibility and
expandability. The developed device layer will be tested
soon at the 300MeV electron linear accelerator control
system using COACK[3] at Tohoku University. After

running a trial, the device layer will be improved, after
which it will be registered in the COACK library and
opened to the public.

As a next step, we plan to add an alarm monitor
function to the device layer in order to enhance the power
of COACK system. We also plan to add special software
components to process particular control functions for the
accelerator.

In a final note, we wish to express sorrow over the
sudden passing of Isamu Abe on June 2nd of this year. As
a project leader, he made a great contribution to the
development of COACK. We have overcome the sadness
of his death, in part by continuing to grow COACK. May
his soul rest in peace.

4 REFERENCES
[1] I. Abe, et al., “Project on PC based accelerator control

kernel (COACK-II),” ICALEPS 1999, Trieste, Italy
[2] I.Abe, et al., “Recent Status of COACK and It’s

Function,” PCaPAC 2000, Hamburg, Germany
[3] Y.Shibasaki, et al., “New Control System for the LNS

Linac,” PCaPAC 2002, Frascati, Italy
[4] “Industrial Automation Tool FA-Engine 3.5 User’s

Manual,” RoboticsWare
[5] “NI-488.2MTM User Manual for Windows,”

NATIONAL INSTRUMENTS

