
MAKING A STATEMENT WITH CORBA

M. Böge, J. Chrin, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

An interface to the Oracle relational database manage-
ment system (RDBMS), implemented using the Common
Object Request Broker Architecture (CORBA), provides
clients with a set of methods that execute Structured Query
Language (SQL) statements and return a “result set” with-
in the context of a CORBA object. The database client-
server framework is presented, including a description of
the CORBA object to relational database mapping scheme.

1 INTRODUCTION

Beam dynamics applications at the Swiss Light Source
(SLS) use the Common Object Request Broker Architec-
ture (CORBA) as the middleware layer and access point to
essential software packages, one of which is the Oracle re-
lational database management system (RDBMS). The use
of a RDBMS in an object oriented environment is in itself
a pseudo-science, presenting the developer with the chal-
lenge of reconciling the object-oriented paradigm with that
of the relational database. Nevertheless, through a sim-
ple object-relational mapping scheme, the so-called “im-
pedence mismatch” between the two orthogonal technolo-
gies can be largely overcome, at least for the purpose of
our intent. A CORBA interface to the Oracle database pro-
vides functions that translate object constructs to relational
constructs that communicate with the database through the
Structured Query Language (SQL). In this way, clients may
perform database operations in an object-oriented manner
and without the need to acquire knowledge of SQL syntax
or the vendor’s Application Programme Interface (API).
Conversely, methods that permit generic database retrieval
and modification operations have also been provided for
clients that require the increased flexibility attained through
direct execution of SQL commands. The methodology be-
hind the database application objects is described, along
with critical CORBA subsystem components that serve to
provide for the scalability of the CORBA database server.

2 CORBA FUNDAMENTALS

An extensive overview of the CORBA framework ap-
pears in previous work [1-2]. Nevertheless, the most funda-
mental subsystems are reiterated here to enable continuity.
In particular, the capability of the POA and the distinction
between CORBA objects and servants is emphasized since
their understanding is pertinent to grasping the concept up-
on which database application objects are implemented.

The most fundamental component of CORBA is the
Object Request Broker (ORB) whose task is to facilitate
communication between objects. Given an Interoperable

Object Reference (IOR), typically obtained from a Nam-
ing Service wherein self-describing names are mapped to
object references, the ORB is able to locate target objects
and transmit data, both to and fro, through remote method
invocations (RMIs). The interface to a CORBA object is
specified using the CORBA Interface Definition Language
(IDL). An IDL compiler translates the interface from IDL
into an application programming language (e.g. C++, Java,
Tcl) generating IDL stubs and skeletons that respectively
provide the framework for client-side and server-side proxy
code. Compilation of applications incorporating IDL stubs
provides a strongly-typed Static Invocation Interface (SII).
Requests and responses between objects are delivered in a
standard format defined by the Internet Inter-ORB Protocol
(IIOP). Requests are marshalled in a platform independent
format by the client stub and unmarshalled on the server-
side into a platform specific format by the IDL skeleton and
the object adapter, which serves as a mediator between an
object’s implementation, the servant, and its ORB, thereby
decoupling user code from ORB processing. In its manda-
tory version, the Portable Object Adapter (POA) provides
CORBA objects with a common set of methods for ac-
cessing ORB functions, ranging from user authentication
to object activation and object persistence. It’s most ba-
sic task, however, is to create object references and to dis-
patch ORB requests aimed at target objects to their respec-
tive servants. The characteristics of the POA are defined at
creation time by a set of POA policies. A server can host
any number of POAs, each with its own set of policies to
govern the processing of requests. Among the more ad-
vanced features of the POA is the servant manager which
assumes the role of (re-)activating server objects (i.e. ser-
vants) as they are required. Requests for the activation of
servants can, alternatively, be delegated to a single default
servant which provides implementations for many objects,
thereby increasing the scalability for CORBA servers. In-
deed, this is the pattern adopted for the database application
objects. The database server is able to produce an arbitrary
number of object references while keeping the number of
active objects constant!

Object
CORBA

servant

Stub

Connection
Logical

ServerClient

Client ORB Server ORB 

Object Reference

IIOP

Method Invocation

SkeletonPOA

Figure 1: The CORBA client-server architecture



Fig. 1 illustrates the principal ORB subsystems involved
in dispatching a request from client to server. The distinc-
tion between CORBA object and servant is deliberate. A
CORBA object in essence remains a virtual entity until in-
carnated by a servant.

3 DATABASE APPLICATION OBJECTS

In constructing database application objects a number of
aspects need first be considered, including:

• the database API,
• mapping of native database types to IDL datatypes,
• object-relational mapping schemes,
• performance versus ease of use.

3.1 The Database API

The API chosen to access the Oracle8i database manage-
ment system is the Oracle Template Library (OTL) [3], im-
plemented using the the Oracle Call Interface (OCI). OTL
provides a set of C++ classes that handle database connec-
tions and transaction management, execution of SQL state-
ments and stored procedures, exception handling and op-
erations with Large Objects (LOBs). The OTL templates
are expanded into direct database API function calls and,
as such, provide high performance and reliability. Fig. 2
illustrates database retrieval times as a function of data vol-
ume, both with and without the CORBA transport layer. A
comparison is made with the Java-based JDBC API. Val-
ues quoted are exemplary values obtained from our system.
The difference in performance between OTL and JDBC is
striking but not unexpected. It is interesting to note that
data retrieval through CORBA and OTL is twice as fast as
that obtained through JDBC alone.

Date: Tue Aug 27 10:26:49 2002
File: DbTimeTest.ps
Created by: chrin@pc3518.psi.ch

C++ (OTL)

CORBA+OTL

   JDBC  

Database Retrieval Timing Tests

KBytes

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540

m
i
l
l
i
S
e
c
o
n
d
s

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000

Figure 2: Database retrieval timing tests

OTL defines a number of datatypes which map to those
of Oracle 8, hence a mapping of CORBA IDL to OTL
datatypes (and vice versa) is what is implemented. Column
data is retrieved using the native OTL dataype and convert-
ed to the recommended IDL type according to the mapping

scheme. Methods that provide database metadata facili-
tate clients requiring knowledge of the relevent datatypes.
For convenience, methods that permit clients to retrieve an
OTL datatype in a form other than the recommended IDL
datatype, have also been provided. Data arrays are medi-
ated through OTL datatypes that map onto Oracle Binary
Large OBjects (BLOBs). Conversely, BLOBs are decom-
posed into sequences of the recommended IDL datatype.

3.2 Object to Relational Database Mapping

An important database application object to develop at
the SLS is one in which the many “holy” tables, containing
data pertinent to the numerous hardware components that
constitute the SLS accelerator complex, are made avail-
able. Here, the problem of how best to map a relational
database to a CORBA object presents itself. Perhaps the
easiest and most straightforward of object-relational map-
ping schemes is to treat each single table as a class and
each row (or line) of the table as an instance of that class.
A column and its value is then regarded, respectively, as
an attribute of that class and its instance. Each row of a
table can thus effectively be mapped to a CORBA object,
whose reference once exported to the Naming Service, can
be readily accessed by any CORBA aware client. To help
implement and manage the inevitably vast number of object
references, the naming graph feature of the Naming Ser-
vice is used. A naming graph is a hierarchy of contexts and
bindings. A name binding is the term given to a name-to-
reference association, while a naming context refers to an
object that stores name bindings.

l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2

Initial Naming Context

slsbt

master position

userSLS:database

slsct

x11ma x06ma

Context

Object
Object Reference

Figure 3: A naming graph for implementing database
object references

Fig. 3 shows the naming graph in use for implement-
ing database object references. Each context object (hol-
low node) implements a table that maps names to object
references that point to either an application object (sol-
id node) or to another context object in the Naming Ser-
vice. Given a starting context, one can navigate to a tar-
get node by traversing a path from the starting context
(e.g. SLS:database) through other contexts (e.g. database
instance: slsbt; table name: position) to the target node (line
number: l n). The sequence of bindings forms a pathname
that uniquely identifies the target object.



The SQL required to establish a database connection, to
execute a SQL statement and retrieve the data, is the do-
main of the server application object. Each table row is
indexed, using the primary key, to expediate data retrieval.
The client is thus able to perform database operations with-
out imparting any SQL syntax, as is illustrated with the Tcl
scripting language in Table 1.

Table 1: Database table/row retrieval operation from Tcl

#### $ObjectRef Operation Output

$ObjRefToTable($LineNo) GetRow rowData

#### Procedure to unfold Tcl list (rowData)

$DisplayData $rowData

3.3 Performance Considerations

In the above mapping scheme, a separate CORBA object
represents each database entry, allowing clients to perform
database retrieval operations using familiar object orient-
ed techniques. Despite the onset of numerous tables with
countless number of rows, and with each entry mapped
to a persistent CORBA object, the cost in terms of mem-
ory consumption at the server is inexpensive, since each
object is incarnated by the same default servant.1 Such a
technique offers a general purpose solution to the problem
of mapping CORBA objects to relational databases while
simultaneously achieving server scalability. There is, how-
ever, a trade off in terms of performance. Access to each
single table row requires a RMI. The factors that limit the
speed of remote invocations are call latency, i.e. message
overhead, and marshalling rate, i.e. rate at which an ORB
is able to transmit and receive data. The call latency of
our chosen ORB, MICO [4], is ∼ 1 ms, while the mar-
shalling rate, typically ∼ 500 kBytes/s depending on the
data type, becomes significant only for data transfers larger
than about a kByte. The use of a default servant itself trades
off the time required to uncover the target object identity
from the POA against the space required for using multiple
servants. Locating and reading the data from the database
disk also has its cost in time. Consequently, a table hold-
ing 3300 rows of three columns, each of datatype “union”,
requires 18 seconds to be read (examplary values.) Such
throughput is within the requirements of clients perform-
ing database operations offline and for the configuration
of applications. Nevertheless, for clients requiring to act
on a complete table, improvements in performance can be
achieved by invoking a method that returns the entire con-
tent of a table. In such cases an object reference to a table
is provided and its content returned with one RMI. In this
way, the table of the above example can now be retrieved
in full in less than 2 seconds. Data is presented to the client
as a sequence of the user-defined “rowData” type, which
itself comprises a sequence of the user-defined “column-
Data” type.

1In practice, the database server hosts one POA per table

3.4 Dynamic SQL statements through CORBA

Developing further the notion that it is more efficient to
send more data with each RMI, it becomes evident that it
would be equally constructive to provide a method that al-
lows the client to execute its own query statement. The pa-
rameters returned are of the same format (or type) as in the
previous case. However, rather than a reference to a table, a
reference to the database instance is obtained and a method
that directly executes the client’s SQL statement is invoked.
In the same vain of granting clients the capability of execut-
ing SQL statements directly, methods that allow insert and
modification operations have been appended. These func-
tions are presently in use by applications for the acquistion
and analysis of data online.

Finally, methods that perform specific database query
operations and package the retrieved data in the context of
a specific, informative and self-describing CORBA object
(as opposed to the generic “rowData” object) have also
been developed for clients with particular needs.

4 PRESENT DIRECTION

CORBA objects adhere to the so called “Pass by Refer-
ence” semantics. A recent addition to the CORBA standard
is the “Objects by Value” specification. Here “value types”
that declare both state members and operations/attributes
are used to create “value objects” that can be passed by
value when transmitted as a parameter or return value of an
operation. Its advent offers the tools to develop interfaces
that provide more scope. One possibility would be to de-
velop a CORBA interface that returns a “result set” class
similar to that offered by JDBC. Here operations that help
navigate through the data returned are also provided to the
client.

5 CONCLUSION

A strategy for developing CORBA based database appli-
cation objects has been presented. The CORBA API trans-
lates object constructs to relational constructs that ultimate-
ly communicate with the database through SQL using the
C++ OTL library for optimum performance. Default ser-
vants provide the ability to support an arbitrary number of
objects in a fixed amount of memory, demonstrating the
scalability of the database server. The CORBA database
API has been usefully employed during the first year of
SLS operation for configuring applications and for the ac-
quisition and analysis of data online.

6 REFERENCES

[1] M. Böge, J. Chrin, PCaPAC 2000 (ID:054),
http://desyntwww.desy.de/pcapac/Proceedings/

[2] M. Böge, J. Chrin, ICALEPCS’01 (ID:THAT002),
http://www-project.slac.stanford.edu/icalepcs/

[3] OTL, http://otl.sourceforge.net/

[4] MICO, http://www.mico.org/


