\boldsymbol{u}^{t}

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Dark Matter – Experimental Searches

XVIII Frascati Spring School "Bruno Touschek" – Spring 2016

Marc Schumann, AEC Bern marc.schumann@lhep.unibe.ch

Content

•	Direct Detection	1 2	Basics: Rates and signatures; energy scales Backgrounds: Sources, reduction	Mon
•	Detectors	3 4	Crystals, cryogenic, directional detectors Nal, Germanium Cryogenic liquids Xenon and Argon	Tue
•	Indirect Detection Current Results	5 6	Indirect detection: Cosmic rays, gamma lines, neutrinos The current dark matter landscape The future	Wed

Some Literature (incomplete!)

- Perkins: Particle Astrophysics, Oxford University Press
- Bertone (ed): Particle Dark Matter, Cambride University Press
- Lewin/Smith: Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, pa.brown.edu/articles/Lewin_Smith_DM_Review.pdf
- Baudis: Direct Dark Matter Detection, arXiv:1211.7222
- Schumann: *Dark Matter 2014*, *arXiv:1501.01200*
- Marrodan/Rauch: Direct Detection Experiments, arXiv:1509.08767
- Heusser: Low-radioactivity background techniques, http://fizisist.web.cern.ch/fizisist/research/Low-RadioactivityBackgroundTechniques.pdf

∧CDM Model

The Standard Model of Cosmology ("Concordance Model")

Describes the Universe since the Big Bang with a few parameters only (6)

Uses Friedmann equation to describe evolution of Universe since Inflation

Agrees with the most important cosmological observations:

- CMB Fluctuation
- Large Scale Structures
- Accelerated Expansion (SN observations)
- Distribution of H, D, He, Li

Ingredients:

- Λ Cosmological Constant
- CDM Cold Dark Matter

(Some) Dark Matter Candidates

- Axion
- WIMPs
 - Neutralino
 - LKP
- sterile neutrinos

• ...

Content

• Direct Detection	1 2	Basics: Rates and signatures; energy scales Backgrounds: Sources, reduction	Mon
Detectors	3 4	Crystals, cryogenic, directional detectors Nal, Germanium Cryogenic liquids Xenon and Argon	Tue
 Indirect Detection Current Results 	5 6	Indirect detection: Cosmic rays, gamma lines, neutrinos The current dark matter landscape The future	Wed

1 Direct Detection Basics: Rate, Signatures, Energy Scale

- Expected dark matter rates are extremely small
 → need to fight backgrounds
- Expected nuclear recoil spectrum is steeply falling \rightarrow need very low threshold
- WIMPs interact coherently with the nucleus
 → form factor suppression for heavy targets
- The WIMP dark matter parameter space
- The Energy Scale for WIMP searches

 → measure nuclear recoils

Milky Way – Standard Halo Model

Form-Factors

Woods-Saxion Potential:

with r_n = nuclear radius, $r_n \approx 1.2 \ A^{1/3}$ fm, s = 1 fm (skin thickness)

WIMP Recoil Spectra

→ expect different rates for different targets (cross checks!)
 → rate scales with A² → heaviert targets favored (for scalar couplings)
 → spectrum rises exponentially → low detector threshold desired
 → low-mass WIMPs → lighter target and/or low threshold necessary

Mass-Cross Section Plane

WIMP Signatures: Annual Modulation

Spectral function of WIMP rate: $\frac{1}{d}$

$$\frac{dR}{dE_R} = \frac{k_0}{k_1} \frac{R_0}{E_0 r} \left\{ \frac{\sqrt{\pi} \mathbf{v}_0}{4\mathbf{v}_E} \left[erf\left(\frac{\mathbf{v}_{\min} + \mathbf{v}_E}{\mathbf{v}_0}\right) - erf\left(\frac{\mathbf{v}_{\min} - \mathbf{v}_E}{\mathbf{v}_0}\right) \right] - e^{-\frac{(\mathbf{v}_{esc})^2}{\mathbf{v}_0^2}} \right\}$$

 The velocity of the Earth varies over the year as the Earth moves around the Sun, and can be written as [in km/s]:

 \rightarrow more faster WIMPs in June \rightarrow more make it above threshold \rightarrow higher rate

WIMP Signatures: Directionality

- The Earth's motion with respected to the Galactic rest frame produces a direction dependance of the recoil spectrum
- The peak WIMP flux comes from the direction of the solar motion, which points towards the constellation Cygnus
- · Assuming a smooth WIMP distribution, the recoil rate is then peaked in the opposite direction
- · In the laboratory frame, this direction varies over the course of a sidereal day due to the Earth's rotation
- This effect can provide a robust signature for a Galactic origin of a WIMP signal

Projection of the WIMP flux in Galactic coordinates

- \rightarrow daily modulation!
- BUT: detector must be able to detect direction of recoils; up to now this only works in very "non-dense" detectors

Quenching in Practice

Scattering Experiment: ER in LXe

Compton Scattering!

2 Backgrounds, Background Reduction

- Where do backgrounds come from?
 - \rightarrow external and intrinsic backgrounds
 - \rightarrow cosmic backgrounds
 - → ER and NR backgrounds
- Reduction 1: Shielding
 - \rightarrow avoid backgrounds
 - → underground laboratories
 - \rightarrow passive and active shields
- Reduction 2: Knowledge on expected signal
 - \rightarrow what makes WIMPs special?
 - → discrimination

Backgrounds from the Environment

Background sources:

mainly U-238 and Th-232 chains, and K-40 decays in the rock and the concrete walls of the laboratory

Note: the primorial chains also produce neutrons

- spontaneous fission processes of heavy elements (dominant in heavy materials, such as lead)
- via (α,n) reactions
 (needs a light target, e.g. plastics)

(alpha,n)

Nucleus	Natural Abundance (%)	Q-Value ^a (MeV)	Threshold Energy ^a (MeV)	Coulomb Barrier (MeV)	Maximum Neutron Energy for 5.2-MeV Alpha ^b
⁴ He	100	-18.99	38.0	1.5	
⁶ Li	7.5	-3.70	6.32	2.1	
⁷ Li	92.5	-2.79	4.38	2.1	1.2
⁹ Be	100	+5.70	0	2.6	10.8
10B	19.8	+1.06	0	3.2	5.9
11 B	80.2	+0.16	0	3.2	5.0
12C	98.9	-8.51	11.34	3.7	
13C	1.11	+2.22	0	3.7	7.2
14N	99.6	-4.73	6.09	4.1	
15N	0.4	-6.42	8.13	4.1	1. S.
16O	99.8	-12.14	15.2	4.7	
170	0.04	+0.59	0	4.6	5.5
18O	0.2	-0.70	0.85	4.6	4.2
19F	100	-1.95	2.36	5.1	2.9
²⁰ Ne	90.9	-7.22	8.66	5.6	
²¹ Ne	0.3	+2.55	0	5.5	7.6
²² Ne	8.8	-0.48	0.57	5.5	4.5
²³ Na	100	-2.96	3.49	6.0	1.8
²⁴ Mg	79.0	-7.19	8.39	6.4	
25Mg	10.0	+2.65	0	6.4	7.7
²⁶ Mg	11.0	+0.03	0	6.3	5.0
27AI	100	-2.64	3.03	6.8	2.2
²⁹ Si	4.7	-1.53	1.74	7.2	3.4
30Si	3.1	-3.49	3.96	7.2	1.4
37Cl	24.2	-3.87	4.29	8.3	1.0
^a Ref. 28. ^b Ref. 26.					

Table 11-4. (Alpha,n) Q-values, threshold energies, and Coulomb barriers

 \rightarrow (α ,n) energetically not possible for heavier elements

Spontaneous fission (sf)

Table 11-1. Spontaneous fission neutron yields

Isotope A	Number of Protons Z	Number of Neutrons N	Total Half-Life ^a	Spontaneous Fission Half-Life ^b (yr)	Spontaneous Fission Yield ^b (n/s-g)	Spontaneous Fission Multiplicity ^{b,c} v	Induced Thermal Fission Multiplicity ^c v
²³² Th	90	142	$1.41 \times 10^{10} \rm{yr}$	$>1 \times 10^{21}$	$>6 \times 10^{-8}$	2.14	1.9
²³² U	92	140	71.7 yr	8×10^{13}	1.3	1.71	3.13
233U	92	141	$1.59 \times 10^{5} \mathrm{yr}$	1.2×10^{17}	8.6×10^{-4}	1.76	2.4
234U	92	142	$2.45 \times 10^{5} \mathrm{yr}$	2.1×10^{16}	5.02×10^{-3}	1.81	2.4
235U	92	143	$7.04 \times 10^{8} \mathrm{yr}$	3.5×10^{17}	2.99×10^{-4}	1.86	2.41
236U	92	144	$2.34 \times 10^{7} \mathrm{yr}$	1.95×10^{16}	5.49×10^{-3}	1.91	2.2
238U	92	146	$4.47 \times 10^{9} \mathrm{yr}$	8.20×10^{15}	1.36×10^{-2}	2.01	2.3
²³⁷ Np	93	144	$2.14 \times 10^{6} \mathrm{vr}$	1.0×10^{18}	1.14×10^{-4}	2.05	2.70
²³⁸ Pu	94	144	87.74 vr	4.77×10^{10}	2.59×10^{3}	2.21	2.9
²³⁹ Pu	94	145	$2.41 \times 10^4 \mathrm{vr}$	5.48×10^{15}	2.18×10^{-2}	2.16	2.88
²⁴⁰ Pu	94	146	$6.56 \times 10^{3} \mathrm{vr}$	1.16×10^{11}	1.02×10^{3}	2.16	2.8
²⁴¹ Pu	94	147	14.35 vr	(2.5×10^{15})	(5×10^{-2})	2.25	2.8
²⁴² Pu	94	148	$3.76 \times 10^{5} \mathrm{vr}$	6.84×10^{10}	1.72×10^{3}	2.15	2.81
²⁴¹ Am	95	146	433.6 vr	1.05×10^{14}	1.18	3.22	3.09
²⁴² Cm	96	146	163 days	6.56×10^{6}	2.10×10^{7}	2.54	3.44
244Cm	96	148	18.1 yr	1.35×10^{7}	1.08×10^{7}	2.72	3.46
²⁴⁹ Bk	97	152	320 days	1.90×10^{9}	1.0×10^{5}	3.40	3.7
252Cf	98	154	2.646 yr	85.5	2.34×10^{12}	3.757	4.06

^bRef. 2. Values in parentheses are from Ref. 3 and have estimated accuracies of two orders of magnitude. Pu-240 fission rate is taken from Refs. 4 and 5. ^cRef. 6.

 \rightarrow only heavy elements. Mainly from U-238 and (somewhat less) U-235.

Activation of materials

 Activation of detector and other materials during production and transportation at the Earth's surface. A precise calculation requires:

➡ cosmic ray spectrum (varies with geomagnetic latitude)

- ⇒ cross section for the production of isotopes (only few are directly measured)
- production is dominated by (n,x) reactions (95%) and (p,x) reactions (5%)

	Isotope	Decay	Half life	Energy in Ge [keV]	Activity [µBq/kg]
	зН	β-	12.33 yr	E _{max(β-)} =18.6	2
production	⁴⁹ V	EC	330 d	Ек(ті) = 5	1.6
in Ge aπer 30d exposure	⁵⁴ Mn	EC, β+	312 d	$E_{K(Cr)} = 5.4, E_{Y} = 841$	0.95
at the Earth's surface and	⁵⁵ Fe	EC	2.7 yr	E _{K(Mn)} = 6	0.66
1 yr storage below ground	⁵⁷ Co	EC	272 d	E _{K(Fe)} =6.4, E _Y =128	1.3
3	⁶⁰ Co	β-	5.3 yr	$E_{max(\beta-)}=318, E_{\gamma}=1173, 1333$	0.2
	⁶³ Ni	β-	100 yr	E _{max(β-)} =67	0.009
	⁶⁵ Zn	EC, β+	244 d	$E^{K(Cu)} = 9, E_{\gamma} = 1125$	9.2
	⁶⁸ Ge	EC	271 d	E _{K(Ga)} = 10.4	172

Cosmic Rays

Cosmic rays and secondary/tertiary particles which they create in reactions can be reduced by going to underground laboratories

The hadronic component (n, p) is already reduced significantly after a few meters rock

Shielding thickness (rock, soil) given in "meter-water-equivalent" (mwe) to allow for comparison between different laboratories

Cosmic Rays

Background in Laboratories

Site (multiple levels given in ft)	Relative muon flux	Relative neutron flux T > 10 MeV
WIPP (2130 ft) (1500 mwe)	× 65	× 45
Soudan (2070 mwe)	$\times 30$	× 25
Kamioke	× 12	×11
Boulby	$\times 4$	$\times 4$
Gran Sasso (3700 mwe)		
Frejus (4000 mwe)	$\times 1$	$\times 1$
Homestake (4860 ft)		
Mont Blanc	$\times 6^{-1}$	$\times 6^{-1}$
Sudbury	$\times 25^{-1}$	$\times 25^{-1}$
Homestake (8200 ft)	$\times 50^{-1}$	$\times 50^{-1}$

Underground Laboratories

Nazionali del Gran Sasso

3.1

Laboratori Nazionali del Gran Sasso

LNGS: 1.4km rock (3700 mwe)

XENON100: passive

XENON1T: active shielding

Pulse Shape Discrimination

Discrimination

Quenching can be used to discriminate NR (signal) from ER (background) when two detection mechanisms are measured simultaneously

- charge and light
- light and heat
- charge and heat

Discrimination ~1..5 x 10^{-3}

Discrimination $\sim 10^{-4} - 10^{-5}$

Example: Liquid Xenon

How to distinguish neutrons from WIMPs?

- ➡ mean free path of few cm (neutrons) versus 10¹⁰ m (WIMP)
- if n-capture => distinctive signature
- material dependence of differential recoil spectrum
- ➡ time dependence of WIMP signal (if neutron background is measured to be constant in time)

