

XVIII Frascati Spring School "BRUNO TOUSCHEK" in nuclear, subnuclear and astroparticle physics LNF, May 9 - 13, 2016, Frascati (Italy)

Oliver Buchmueller, Imperial College London

SEARCHES FOR NEW PARTICLES AT THE LHC

Oliver Buchmueller, Imperial College London

SEARCHES FOR DARK MATTER PRODUCTION AT THE COLLIDERS

The Universe (as we know it today)

The Universe (as we know it today)

(Very Strong) Evidence for Dark Matter

(Very Strong) Evidence for Dark Matter

Known DM properties

Known DM properties

 Gravitationally interacting

Known DM properties

- Gravitationally interacting
- Not short-lived

Known DM properties

- Gravitationally interacting
- Not short-lived

Not hot

Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Clear evidence for a new particle(s)!

Searches for Dark Matter (&SUSY)

Direct Searches

DM?

Dana (excident: 2010-3u-04 (2225-58 859-11 GMT)04 2368 CEST Run / Ever (129779 / 4994199

on the second state of the second

Indirect Searches

How to Search for Dark Matter?

Searching for a particle means to interact with it using known particles in the detector or producing it

INDIRECT DETECTION

Dark matter may pair annihilate
in our galactic neighborhood to
Photons x a

- Neutrinos
- Positrons
- Antiprotons
- Antideuterons

• The relic density provides a target annihilation cross section $\langle \sigma_A v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$

ure O Buchmi

DIRECT DETECTION

• WIMP properties

- If mass is 100 GeV, local density is ~1 per liter
- velocity → 10⁻³ c

Look for normal matter recoiling from WIMP collisions in detectors deep underground

Dark matter elastically scatters off nuclei

θ, γ

Nuclear recoils detected by phonons, scintillation, ionization, ...

Attisha

19

Characterizing Dark Matter Searches

Characterizing Dark Matter Searches

χ

Imperial College London

Supersymmetry

Extension of the Standard Model: Introduce a new symmetry Spin ½ matter particles (fermions) ⇔ Spin 1 force carriers (bosons) Standard Model particles SUSY particles

- R-parity conservation:
 - SUSY particles are produced in pairs
 - The lightest SUSY particle (LSP) is stable

-1 SUSY particles

What do we call a "SUSY search"?

The definition is purely derived from the experimental signature. Therefore, a "SUSY search signature" is characterized by Lots of missing energy, many jets, and possibly leptons in the final state

Slides from 2007

<u>Missing Energy:</u>

from LSP

Multi-Jet:

• from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutralios

RP-Conserving SUSY is a very prominent example predicting this famous signature but ...

What is its experimental signature?

Searches @ Colliders – Lecture O. Buchmüller

by no means is it the only New Physics model predicting this experimental pattern. Many other NP models predict this genuine signature

Slides from 2007

Missing Energy:

• Nwimp - end of the cascade

Multi-Jet:

 from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc but a more generic definition for this signature is as follows.

Inclusive SUSY Searches in 2013

Inclusive SUSY Searches in 2013

Inclusive SUSY Searches in 2013

Imperial College London

CMSSM: Evolution with time

Global Fit to indirect and direct constraints on SUSY!

Other "fitter" groups find very similar results: e.g. SuperBayeS: <u>arXiv:1212.2636</u>

Fittino group: <u>arXiv:1212.2636</u>

X² increase from bluish to reddish

Source:

http://mastercode.web.cern.ch/mastercode/

Observable	Source Th./Ex.	Constraint	$\Delta \chi^2$ (CMSSM)	$\Delta \chi^2$ (NUHM1)	$\Delta \chi^2$ ("SM")
m _t [GeV]	43	173.2 ± 0.90	0.05	0.06	-
$\Delta \alpha_{had}^{(5)}(M_Z)$	42	0.02749 ± 0.00010	0.009	0.004	-
M_Z [GeV]	44	91.1875 ± 0.0021	2.7×10 ⁻⁵	0.26	-
Γ_Z [GeV]	26 / 44	$2.4952 \pm 0.0023 \pm 0.001_{\rm SUSY}$	0.078	0.047	0.14
σ_{had} [nb]	26 / 44	41.540 ± 0.037	2.50	2.57	2.54
R _l	26 / 44	20.767 ± 0.025	1.05	1.08	1.08
$A_{\rm fb}(\ell)$	26 / 44	0.01714 ± 0.00095	0.72	0.69	0.81
$A_{\ell}(P_{\tau})$	26 / 44	0.1465 ± 0.0032	0.11	0.13	0.07
Rb	26 / 44	0.21629 ± 0.00066	0.26	0.29	0.27
R _c	26 / 44	0.1721 ± 0.0030	0.002	0.002	0.002
A _{fb} (b)	26 / 44	0.0992 ± 0.0016	7.17	7.37	6.63
$A_{fb}(c)$	26 / 44	0.0707 ± 0.0035	0.86	0.88	0.80
Ab	26 / 44	0.923 ± 0.020 0.670 ± 0.007	0.36	0.36	0.35
A _c	20 / 99	0.1519 ± 0.0021	9.16	0.005	0.005
$A_{\ell}(SLD)$	20 / 44	0.1513 ± 0.0021	3.16	3.03	3.51
$\sin^{-} \theta_{w}(Q_{fb})$	20 / 94	0.2324 ± 0.0012 80 900 ± 0.023 ± 0.010 mm	1.77	1.99	2.08
MW Gev		00.355 ± 0.025 ± 0.0108087	4.05	1.35	2.00
$a_{\mu} - a_{\mu}$	53 / [42,54	(30.2 ± 8.8 ± 2.0gUgy) × 10	4.35	1.62	11.19 (N/A)
Mh Gev	20 / 33,30	> 114.4 ±1.5808Y	0.0	0.0	0.0
$BR_{b \rightarrow s\gamma}$	45 / 46	$1.117 \pm 0.076_{EXP}$	1.83	1.09	0.94
		$\pm 0.082_{SM} \pm 0.050_{SUSY}$	0.04		0.0-
$BR(B_s \rightarrow \mu^+ \mu^-)$	[29] / [41]	CMS & LHCb	0.04	0.44	0.01
$BR_{B\to \tau\nu}$	29 / 46	$1.43 \pm 0.43_{EXP+TH}$	1.43	1.59	1.00
$BR(B_d \rightarrow \mu^+ \mu^-)$	29 / 46	< 4.6[±0.01gugy] × 10 ⁻⁵	0.0	0.0	0.0
$BR_{B \to X, U}^{h, h, r, h, h}$	47 / 46	0.99 ± 0.32	0.02	≪ 0.01	≪ 0.01
$BR_{K \rightarrow \mu\nu}^{hK\nu/Sm}$	29 / 48	$1.008 \pm 0.014_{\rm EXP+TH}$	0.39	0.42	0.33
$BR_{K \rightarrow \pi \nu \nu}^{EXV/SM}$	49/50	< 4.5	0.0	0.0	0.0
$\Delta M_{B_8}^{\text{EXP/SM}}$	49 / 51,52	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$	0.02	0.02	0.01
$\frac{\Delta M_{R_{d}}^{HXP/SM}}{\Delta M_{R_{d}}^{HXP/SM}}$	[29] / [46] 51] 52]	$1.00\pm 0.01_{EXP}\pm 0.13_{SM}$	≪ 0.01	0.33	≪ 0.01
$\Delta \epsilon_{K}^{EXV/SM}$	49 / 51,52	$1.08 \pm 0.14_{\rm EXP+TH}$	0.27	0.37	0.33
$\Omega_{CDM}h^2$	31 / 13	$0.1120 \pm 0.0056 \pm 0.012$ susy	8.4×10 ⁻⁴	0.1	N/A
$\sigma_p^{p_1}$	25	(m_{qq}, σ_p^{S1}) plane	0.13	0.13	N/A
$jets + B_T$	18,20	$(m_0, m_{1/2})$ plane	1.55	2.20	N/A
$H/A, H^{\pm}$	211	$(M_A, \tan\beta)$ plane	0.0	0.0	N/A
Total $\gamma^2/d.o.f.$	All	All	28.8/22	27.3/21	32.7/23 (21.5/22)
p-values			15%	16%	9% (49%)

CMSSM: Evolution with time

mas/Tencope

MasterCode: The two worlds of SUSY models

-

Buchmüller

Ö

Lecture

Т

Colliders

0

Searches

Models in Comparison in "Mq-Mg Search plane"

SUSY Status – post 7 TeV LHC data

Constrained SUSY models like the CMSSM are severely put under pressure by the LHC limits!

- Experiments need to define new benchmarks and to present the interpretation of their searches.
- A bottom-up approach, using so-called simplified models, was adopted but ATLAS and CMS as the primary vehicle to present SUSY searches!

Interpretation in Simplified Models

SMS: a few interesting features

 $m_{G}^{max} \approx 0.8 \text{ TeV}$: Best limit in plane

BR for decay chain considered.

How to summarize SMS limits?

Approach taken in the 2012 and 2013 Experimental SUSY PDG reviews [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf http://pdg.lbl.gov/2013/reviews/rpp2013-rev-susy-2-experiment.pdf

Model	Assumption	$m_{ ilde q}$	$m_{ ilde{g}}$
	$m_{ ilde{q}}pprox m_{ ilde{g}}$	1400	1400
CMSSM	all $m_{ ilde{q}}$	-	800
	all $m_{ ilde{g}}$	1300	-
Simplified model $\tilde{g}\tilde{g}$	$m_{ ilde{\chi}^0_1} = 0$	-	900
	$m_{ ilde{\chi}_1^0} > 300$	-	no limit
Simplified model $\tilde{q}\tilde{q}$	$m_{ ilde{\chi}^0_1}=0$	750	-
	$m_{ ilde{\chi}_1^0}>250$	no limit	-
Simplified model	$m_{ ilde{\chi}^0_1} = 0, m_{ ilde{q}} pprox m_{ ilde{g}}$	1500	1500
$ ilde{g} ilde{q}, ilde{g}ar{ ilde{q}}$	$m_{\tilde{\chi}_1^0} = 0$, all $m_{\tilde{g}}$	1400	-
	$m_{ ilde{\chi}_1^0}^{\sim 1} = 0, ext{ all } m_{ ilde{q}}$	-	900

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV).

O. Buchmüller

Lecture

Т

Colliders

ම

Searches

How to summarize SMS limits?

Approach taken in the 2012 and 2013 Experimental SUSY PDG reviews [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf http://pdg.lbl.gov/2013/reviews/rpp2013-rev-susy-2-experiment.pdf

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV). 4^{-1}

Characterizing Dark Matter Searches

χ

Mono-Mania (at the LHC)

Mono-Mania (at the LHC)

Mono-X searches at colliders

E_Tmiss trigger **Example Monojet** (8 TeV, 20.3 fb-1) $E_{T^{miss}}$, $p_{T}(j) > 150 - 900 \text{ GeV}$ 1 or 2 jets (anti-k_T, R=0.4, p_T>30 GeV) $|\Delta \phi(E_{T^{miss}}, j_2)| > 0.5$ **Example Monophoton** (8 TeV, 19.6 fb⁻¹): $E_{T^{miss}}$, $p_T(\gamma) > 140$ GeV, N_{jet} < 2 (anti-k_T, R=0.5, p⊤>30 GeV) $\Delta \phi$ (γ , E_T^{miss}) >2,

48

ATLAS Mono-Jet: Comparison with Direct Detection

ATLAS Mono-Jet: Comparison with Direct Detection

ATLAS Mono-Jet: Comparison with Direct Detection

Mono-Jet analyses better than direct detection?!

Claim [often made]:

For low mass and the entire spin-dependent case monojet limits are stronger than direct detection limits!

Effective Field Theory (EFT) Interpretation

Example of considered operators:

 $O_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma_\mu q)}{\Lambda^2}$

Vector operator, s-channel

$$O_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

Axial vector operator, s-channel

Assumption of EFT

If the operator (e.g. V or AV) mediator is suitably(!!) heavy it can be integrated out to obtain the effective V or AV contact operator. In this case (and only this case), the contact interaction scale Λ is related to the parameters entering the Lagrangian:

$$\Lambda = \frac{M_{mediator}}{\sqrt{g_q g_\chi}} \quad (\text{relat}$$

(relation in the full theory)

Fermi Interaction & Muon Decay

Fermi Interaction & Muon Decay

The Fermi 4-point interaction was able to explain well the beta-decay as well as the muon decay with one single interact strengths G_F (Fermi constant)

However, the cross-section grows as the square of the energy:

$$\sigma \propto G_F^2 E^2$$

making it invalid for higher energies!

Fermi Interaction & Muon Decay

The Fermi 4-point interaction was able to explain well the beta-decay as well as the muon decay with one single interact strengths G_F (Fermi constant)

However, the cross-section grows as the square of the energy:

$$\sigma \propto G_F^2 E^2$$

making it invalid for higher energies!

Solution:

Resolve the "blob" and replace the 4-point interaction with an ultraviolet complete theory!

$$\sigma \propto G_F^2 M_W^2$$

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

- log₁₀(σ_{EFT} / σ_{FT})
- 7 Compare prediction of FT with EFT in $m_{med} m_{DM}$ plane. 6 Three regions become visible:
 - Region I: EFT and FT agree better then 20%
 - EFT is valid!
 - Region II: EFT yields significant weaker limits then FT
 > EFT limits are too conservative!
 - Region III: EFT yields significant stronger limits then FT
 - EFT limits are too aggressive!

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

Validity of Effective Field Theory Limits

59

What those this imply on model-dependences of EFT limits?

Look at EFT validity in m_{DM} – coupling* plane!

* Coupling chose such that CMS EFT limit on Λ applies to FT

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is valid

For this we calculate the minimum coupling $\sqrt{g_q g_\chi} = m_{med} / \Lambda_{CMS}$

that the simplified model must have for the EFT limits to apply. This is defined by region I (i.e. better then 20% agreement of FT and EFT).

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density

When exclude the region in which relic abundance is larger then the observed value of $\Omega_{\chi\chi}h^2 = 0.119$ only mediator masses above a few hundred GeV fulfill this.

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density
- 3. Require theory to be perturbative (<4 π)

When we also require that the region/theory must be perturbative:

 $\sqrt{g_q g_\chi} < 4\pi$

only a very small region is left!

EFT limits of monojet searches only apply to a very (as in VERY) small class of DM models!

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density
- 3. Require theory to be perturbative (<4 π)

4. $m_{med} < \Gamma_{med} ALWAYS!$

We also find that for all DM models the EFT is valid only IF the mass of the mediator is smaller than its width !

In the reaming part of the plot: $\sqrt{g_q g_\chi} > 2$

a particle-like interpretation of the mediator is doubtful because of $m_{med} < \Gamma_{med}$!

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

What those this imply on model-dependences of EFT limits?

The observation that all DM theories for which the EFT is valid must have m_{med} < Γ_{med} and the small class to models it applies in any case leads to the conclusion the EFT only applies to a very small class of DM models. EFT limits of monojet searches are therefore highly model-depended!

Alternative Interpretation Ansatz: Simplified models

After three years of operation at the LHC the landscape for interpretation of searches has changed dramatically – new superior & modern approaches have replaced in many areas longstanding traditional ones (e.g. SUSY searches)

Alternative Interpretation Ansatz: Simplified models

The problem is governed by five variables:

- \succ Couplings g_q and g_χ
- \succ Mediator mass m_{med} and mediator width Γ_{med}
- Dark matter candidate mass m_{DM}

Minimal Simplified Dark Matter Model

Collider vs Direct Detection

Scalar and Pseudoscalar

Summary for most basic Mediator Interactions

... in a nutshell!

utshell!			
Basic Mediators			
<u>Vector</u>	Axial-vector		
EWK like coupling	EWK like coupling		
(assumed equal to all	(assumed equal to all		
leptons).	leptons).		
Besides very low DM	DD and collider are equal in		
masses	overall sensitivity but probe		
DD wins clearly over	different regions of		
collider!	parameter space!		
<u>Scalar</u>	Pseudoscalar		
Yukawa like coupling on SM	Yukawa like coupling on SM		
side (mass based on SM	side (mass based on SM		
side) _	side)		
DD and collider are equal in	No limits from DD (only		
overall sensitivity but probe	from indirect detection).		
different regions of	Collider provides limits		

71

NOW A BIT MORE FOR THE DM EXPERTS [OR THOSE WHO LIKE TO BECOME ONE **4**]

Imperial College

London

New LHC Dark Matter Working Group

This Working Group brings together theorists and experimentalists to define guidelines and recommendations for the benchmark models, interpretation, and characterisation necessary for broad and systematic searches for dark matter at the LHC. More details can be found at this page:

http://lpcc.web.cern.ch/LPCC/index.php?page=dm_wg

and the mailing list is <u>lhc-dmwg@cern.ch</u>**.

Theory Representative: U. Haisch, M. Mangano ATLAS Representative: A. Boveia, C. Doglioni CMS Representative: O. Buchmueller, K. Hahn

**To join the WG mailing list, go to

http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupNam e=lhc-dmwg

Imperial College London

LHC DM WG: First Goal

The first goal of the LHC DM WG is to discuss and agree upon the presentation of collider searches for DM between ATLAS and CMS. Both LHC experiment and theory community will collaborate, in order to decide upon the best format for comparison between collider and non-collider results and on the usability of the material that is made public for the Winter conferences 2016.

Imperial College London

LHC DM WG: First Goal

The first goal of the LHC DM WG is to discuss and agree upon the presentation of collider searches for DM between ATLAS and CMS. Both LHC experiment and theory community will collaborate, in order to decide upon the best format for comparison between collider and non-collider results and on the usability of the material that is made public for the Winter conferences 2016.

> First meeting of the new LHC Dark Matter Working Group was devoted to this subject:

> > 10-11 December 2015 CERN

https://indico.cern.ch/event/459037/

Recommendation Document

CERN-LPCC-2016-001

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models

of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

http://arxiv.org/pdf/1603.04156.pdf

Recommendation Document

CERN-LPCC-2016-001

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models

of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

A special acknowledgement for Felix Kahlhoefer, Christopher McCabe, and Tim Tait for their contributions as main editors with LHC DM WG conveners!

http://arxiv.org/pdf/1603.04156.pdf

Recommendation in a nutshell

- Primary focus on presentation of LHC results vis-a-vis DD/ID
- Recommend that LHC searches are presented as a 'stand-alone" result in the appropriate variables of collider physics.
 - > Main results should feature in the "mass-mass" plane $[M_{med} M_{DM}]$
 - All important assumptions entering these results should be stated [on plot and in figure captions/accompanying documentation. The LHC WG recommendation contains examples for all primary issues.
- Recommend to compare LHC results with different experiments in their "language".
 - Translation of "mass-mass" plane limits in σ_{D/ID} M_{DM} [direct detection experiment e.g. LUX] and σ_{annihilation} - M_{DM} [indirect detection experiment e.g. Fermi-LAT] is well-defined.
 - This avoids manipulation of other experiments results and minimizes the caveats and assumptions entering. Yet, also here its critical to spell out all assumptions/caveats relevant. The LHC WG recommendation contains examples for all primary issues.

O. Buchmüller

Lecture

Т

Searches @ Colliders

Mass-Mass plane $[M_{med} - M_{DM}]$

Main result of the interpretation of collider search in simplified model

Mass-Mass plane $[M_{med} - M_{DM}]$

Main result of the interpretation of collider search in simplified model

Mass-Mass plane [M_{med} – M_{DM}]

Main result of the interpretation of collider search in simplified model

Mass-Mass plane [M_{med} – M_{DM}]

Main result of the interpretation of collider search in simplified model

95% CL exclusion contours in the mass-mass plane for a simplified model with a vector mediator, Dirac DM and couplings $g_q = 0.25$ and $g_{DM} = 1$. The black solid (dashed) curve shows the median of the observed (expected) limit, while the yellow curves indicate the scale uncertainties of the observed bound. A minimal width is assumed and the excluded parameter space is to the bottom-left of all contours. The dotted magenta curve corresponds to the parameters where the correct DM relic abundance is obtained from standard

Mass-Mass plane [M_{med} – M_{DM}]

Main result of the interpretation of collider search in simplified model

Comparison with Direct Detection

A comparison of collider results to the σ_{SI} -m (a) and σ_{SD} -m (b) planes. Unlike in the mass-mass plane, the limits are shown at 90% CL. The LHC contour in the spin-independent [spin-dependent] plane is for a vector [axial-vector] mediator, Dirac DM and couplings $q_{q} = 0.25$ and $q_{DM} = 1$. The LHC spin-independent exclusion contour is compared with the LUX, CDMSLite and CRESST-II limits, which are the most con- straining in the mass range shown. The spin-dependent exclusion contour constrains the DM-proton cross-section and is compared with limits from the PICO experiments. The shown collider results are intended for illustration only and are not based on real data.

Comparison with Direct Detection

Provide simple formulas to perform the translation of the Mass-mass plane results into these planes. A full derivation of these formulas along with assumptions/caveat discussions is provided in the report. ⁸⁵

Comparison with Direct Detection

Provide simple formulas to perform the translation of the Mass-mass plane results into these planes. A full derivation of these formulas along with assumptions/caveat discussions is provided in the report. ⁸⁶

Comparing with Indirect Detection

report.

Due to additional velocity suppression DD experiments, Have partially know limits on Pseudo-Scalar (PS) mediators.

Hence for PS we compare with ID

Again; spelling out basic assumptions on the plot and accompanying documentation is strongly recommended.

 $\langle \sigma v
angle_q = rac{3m_q^2}{2\pi v^2} rac{3m_q^2}{(M_{
m med}^2)}$ $rac{g_{
m DM}^2\,g_q^2\,m_{
m DM}^2}{(m_{
m ed}^2-4m_{
m DM}^2)^2+M_{
m me}^2}$ m_q^2

Summary

- Based on the WG workshop in December 2015 the LHC DM WG conveners in addition with interested and experienced theorists and experimentalists have put together a recommendation on how to present and compare collider DM searches using simplified models.
- The main purpose of the report is to establish a comprehensive summary of the wealth of available material accompanied with a hands-on description for the experiments on how to perform the presentations.
- A strong emphasis has been put on carefully outlining and discussing the assumptions and caveats coming along with this approach.
- This recommendation is by no means exhaustive and, as many other things in this developing field, will be subject to changes in the future – i.e. this is not cast in stone but it seems a very good starting base.

Searches @ Colliders - Lecture O. Buchmüller

Outlook: 8 TeV vs 14 TeV

qq: factor ~1000

Summary

So far New Physics has not revealed itself!

- Even by 2010 the LHC has enter new territory for New Physics searches and since pushed e.g. the (coloured) SUSY mass scale to the ~1 TeV scale
- We were well prepared for an early discovery but we also knew that it could take more time and ingenuity before we can claim a discovery (if NP exist)
- The LHC experiments have established an impressive variety of very powerful direct searches for many different final states!
 - Based on these results we need to establish the "big picture" in order to understand if/where our search strategy might have weak spots or even holes!
 - This requires appropriate interpretations of the searches and a MEANIGFUL comparison with other experiments – important example DM searches!

Imperial College London

BACKUP

Most results presented in this talk (and many more) can be accessed via the public page of the ATLAS and CMS experiments:

ATLAS SUSY:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

CMS SUSY

:https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsS US

Imperial College London

100 TeV Prediction from arXiv:1509.02904

The full story

SUSY SUMMARY PLOT

Direct squark production – chosen limits

CMS arXiv:1502.04358

Signature: Jets + E_t^{miss} with M_{T2} Limit assumes all 1st & 2nd gen squarks to be mass degenerate [or only one light squark]! **ATLAS arXiv:1308.2631** Signature: 2 b-jets + E_T^{mis} ATLAS arXiv:1407.0583 Signature: 1Lepton + jets + E_{T}^{mis}

Gluino mediated squark production – limits chosen

ATLAS arXiv:1405.7875

Signature: 0L + 2-6 Jets + E_t^{miss}

CMS arXiv:1502.00300

Signature: : 0L + Razor + b-tag Signature: 0/1 Leptons + 3 b-tag + E_t^{mis}

106

Compressed stop – mind the gap!

ATLAS arXiv:1407.0608 Mono-jet & c-tag combined ATLAS: arXiv:1407.0583 1L + E_t^{mis} & b-tag CMS arXiv:1308.1586 1L + E_t^{mis} and BDT & b-tag 109

Searches @ Colliders – Lecture O. Buchmüller

Searches @ Colliders - Lecture O. Buchmüller

Searches @ Colliders – Lecture O. Buchmüller

Imperial College London

Direct chargino/neutralino production

Searches @ Colliders – Lecture O. Buchmüller

Searches @ Colliders – Lecture O. Buchmüller

MASTERCODE

Imperial College London

<u>ـ</u>

Resolving tension (g-2) and LHC

L

Resolving tension (g-2) and LHC

_

Resolving tension (g-2) and LHC

O. Buchmüller

Lecture

Searches @ Colliders -

CMSSM

 \star

From MasterCode papers: 5250, 1408.4060 and 1504.03260

120

NUHM1

 \star

NUHM1: best fit, 1σ , 2σ

NUHM2

 \star

NUHM2: best fit, 1σ , 2σ

MasterCode: The two worlds of SUSY models

CMSSM Today: Mq-Mg Search plane

Imperial College London

CMSSM Today: Mq-Mg Search plane

CMSSM Today: Mq-Mg Search plane

CMSSM Today: Mq-Mg Search plane

-

Buchmüller

Ö

Lecture

Т

Colliders

0

Searches

Models in Comparison in "Mq-Mg Search plane"

Imperial College London

SUSY PROJECTION OF DIFFICULT CHANNELS

O. Buchmüller Searches @ Colliders - Lecture

O. Buchmüller Searches @ Colliders - Lecture

Searches @ Colliders - Lecture O. Buchmüller

O. Buchmüller Searches @ Colliders - Lecture

EFT VALIDITY REGION ILLUSTRATED

Effective Field Theory (EFT) Interpretation

Example of considered operators:

$$O_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma_\mu q)}{\Lambda^2}$$

Vector operator, s-channel

$$O_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

Axial vector operator, s-channel

Assumption of EFT

If the operator (e.g. V or AV) mediator is suitably(!!) heavy it can be integrated out to obtain the effective V or AV contact operator. In this case (and only this case), the contact interaction scale Λ is related to the parameters entering the Lagrangian:

$$\Lambda = \frac{M_{mediator}}{\sqrt{g_q g_\chi}} \quad (\text{relation})$$

(relation in the full theory)

Imperial College London

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

- 7 Compare prediction of FT with EFT in $m_{med} m_{DM}$ plane. 6 Three regions become visible:
 - Region I: EFT and FT agree better then 20%
 - EFT is valid!
 - Region II: EFT yields significant weaker limits then FT
 ➢ EFT limits are too conservative!
 - Region III: EFT yields significant stronger limits then FT
 - EFT limits are too aggressive!

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

Imperial College London

Validity of Effective Field Theory Limits

What those this imply on model-dependences of EFT limits?

Look at EFT validity in m_{DM} – coupling* plane!

* Coupling chose such that CMS EFT limit on Λ applies to FT

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is valid

For this we calculate the minimum coupling $\sqrt{g_q g_\chi} = m_{med} / \Lambda_{CMS}$

that the simplified model must have for the EFT limits to apply. This is defined by region I (i.e. better then 20% agreement of FT and EFT).

Model-dependences of EFT limits

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density

When exclude the region in which relic abundance is larger then the observed value of $\Omega_{\chi\chi}h^2 = 0.119$ only mediator masses above a few hundred GeV fulfill this.

Model-dependences of EFT limits

EFT limits of monojet searches only apply to a very (as in VERY) small class of DM models!

Model-dependences of EFT limits

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

What those this imply on model-dependences of EFT limits?

Look at EFT validity in m_{DM} – coupling* plane!

- 1. Region in which EFT is valid (20%)
- 2. Require compatibility with relic density
- B. Require theory to be perturbative ($<4\pi$)
- 4. $m_{med} < \Gamma_{med} ALWAYS!$

The observation that all DM theories for which the EFT is valid must have m_{med} < Γ_{med} and the small class to models it applies in any case leads to the conclusion the EFT only applies to a very small class of DM models. EFT limits of monojet searches are therefore highly model-depended! Imperial College London

Collider vs Direct Detection

147

LHC

Imperial College London The Large Hadron Collider at CERN

Imperial College London The Large Hadron Collider at CERN

The Large Hadron Collider at CERN

Imperial College

London

The Large Hadron Collider at CERN

+TOTEM

Imperial College

London

Imperial College London

The Large Hadron Collider at CERN

15 thousand million years

The big Ball

1 thousand million years

300 thousand years

e.

(ATLAS, CMS...)

10⁻⁵ seconds

3 minutes

10⁻¹⁰ seconds

10-34 seconds

10⁻⁴³ seconds

10³² degrees

10²⁷ degrees

10¹⁵ degrees

6000 degrees

LHC studies the first 10⁻¹⁰ -10⁻⁵ second after the big bang!!

positron (anti-electron) proton neutron meson hydrogen deuterium e helium

lithium

heavy particles the weak force

radiation

particles

quark

e electron

anti-quark

carrying

QCD phase transition (ALICE...)

Electro-weak phase transition

10¹⁰ degrees

10⁹ degrees