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1. The Standard Model: brief introduction
The Standard Model describes electromagnetic, strong and w eak interactions:

Electromagnetic interaction (QED):
– subjects: electric charged particles,
– mediator: one massless photon,
– conserves P, C, T... et of course Q.

Strong (nuclear) interaction (QCD):
– quarks appearing in three q,q ,q,
– interacting via exchange of color,
– mediators: the massless gluons,
– conserves P,C,T and color number;
– color=attractive ⇒ confinement!

Weak (nuclear) interaction:
– subjects: all fermions;
– mediators: massive W +, W−, Z!
(only short range interaction),

– does not conserve parity: fL 6= fR;
(ex: no νR ⇒ ν masseless);

– does not conserve CP: nP ≫ nP̄.

Particules de: matière (s=1/2) force (s=1)

3 familles de fermions bosons-jauge

c→
Q→
m→

quark up

3u
+2/3
∼5 MeV

quark charm

3c
+2/3
1.6 GeV

quark top

3t
+2/3
172 GeV

gluon

8g
0
0

quark down

3d
–1/3
∼5 MeV

quark strange

3s
–1/3
0.2 GeV

quark bottom

3b
–1/3
4.9 GeV

photon

γ
0
0

neutrino e

νe
0

∼ 0

neutrino µ

νµ
0

∼ 0

τ neutrino

ντ
0

∼ 0

boson Z

Z0

0
91.2 GeV

electron

e
–1
0.5 MeV

muon

µ
–1
0.1 GeV

tau

τ
–1
1.7 GeV

bosons W

W±
±1
80.4 GeV
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1. The Standard Model: brief introduction

The SM of the electromagnetic, weak and strong interactions is:
• relativistic quantum field theory: quantum mechanics+spec ial relativity,
• based on gauge symmetry: invariance under internal symmetr y group,
• a carbon–copy of QED, the quantum field theory of electromagn etism.

QED: invariance under local transformations of the abelian group U(1) Q:
– transformation of electron field: Ψ(x) → Ψ′(x) = eieα(x)Ψ(x)
– transformation of photon field: Aµ(x)→A′

µ(x)=Aµ(x)− 1
e
∂µα(x)

The Lagrangian density is invariant under above field transf ormations

LQED = −1
4
FµνF

µν + iΨ̄Dµγ
µΨ −meΨ̄Ψ

field strength Fµν=∂µAν−∂νAµ and cov. derivative Dµ=∂µ−ieAµ.

Very simple, consistent, aesthetical and extremely succes sful theory:
• minimal coupling: interaction uniquely determined once gr oup fixed,
• invariance implies massless photon and allows massive ferm ions,
• mathematically consistent: perturbative, unitary, renor malisable,
• very predictive theoretically and very well tested experim entally.
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1. The Standard Model: brief introduction
SM is based on the gauge symmetry GSM≡SU(3)C×SU(2)L×U(1)Y

• The local/gauge symmetry group SU(3)C describes the strong force:
– interaction between quarks which are SU(3) triplets: q, q , q,
– mediated by 8 gluons, Ga

µ corresponding to 8 generators of SU(3)C
Gell-Man 3× 3 matrices: [Ta,Tb] = ifabcTc with Tr[TaTb] = 1

2
δab

– asymptotic freedom: interaction “weak” at high energy, αs =
g2
s

4π
≪ 1

⇒ the partons are free at high-energy and confined at low-energ ies...

The Lagrangian of the theory is a simple extension of the one o f QED:

LQCD = −1
4
Ga

µνG
µν
a + i

∑

i q̄iDµγ
µqi (−

∑

imiq̄iqi)

with Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gs f

abcGb
µG

c
ν

Dµ = ∂µ − igsTaG
a
µ.

Interactions/couplings are then uniquely determined by SU (3) structure:
– fermion gauge boson couplings : −giψVµγ

µψ
– V self-couplings : igiTr(∂νVµ−∂µVν)[Vµ,Vν ]+

1
2
g2
i Tr[Vµ,Vν ]

2

– the gluons are massless while quarks can be massive (like in QED)...
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1. The Standard Model: brief introduction
SM is based on the gauge symmetry GSM≡SU(3)C×SU(2)L×U(1)Y

• SU(2)L×U(1)Y describes the electromagnetic+weak=EW interaction:

– between the three families of quarks and leptons: fL/R = 1
2
(1∓ γ5)f

I3L,3Rf =±1
2
,0 ⇒ L =

(

νe
e−

)

L
, R = e−R, Q = (ud)L , uR, dR

Yf =2Qf−2I3f ⇒ YL=−1,YR=−2,YQ= 1
3
,YuR

= 4
3
,YdR

=−2
3

Same holds for the two other generations: (µ, νµ, c, s) and (τ, ντ , t,b).
There is no νR field (and neutrinos are thus exactly and stay massless).

– mediated by the Wi
µ (isospin) and Bµ (hypercharge) gauge bosons

corresping to the 3 generators (Pauli matrices) of SU(2) and are massless
Ta = 1

2
τa ; [Ta,Tb] = iǫabcTc and [Y,Y] = 0.

Lagrangian simple: with fields strengths and covariant deri vatives as QED

Wa
µν=∂µW

a
ν−∂νWa

µ+g2ǫ
abcWb

µW
c
ν ,Bµν=∂µBν−∂νBµ

Dµψ =
(

∂µ − igTaW
a
µ − ig′Y

2
Bµ

)

ψ , Ta = 1
2
τa

LSM = −1
4
Wa

µνW
µν
a − 1

4
BµνB

µν + F̄Li iDµγ
µFLi + f̄Ri iDµγ

µ fRi
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1. The Standard Model: brief introduction
But if gauge boson and fermion masses are put by hand in LSM

1
2
M2

VV
µVµ and/or mf f̄ f terms: breaking of gauge symmetry.

This statement can be visualized by taking the example of QED where

the photon is massless because of the local U(1)Q local symmetry:

Ψ(x)→Ψ′(x)=eieα(x)Ψ(x) , Aµ(x)→A′
µ(x)=Aµ(x)− 1

e
∂µα(x)

• For the photon (or B field for instance) mass we would have:
1
2
M2

AAµA
µ → 1

2
M2

A(Aµ− 1
e
∂µα)(A

µ− 1
e
∂µα) 6= 1

2
M2

AAµA
µ

and thus, gauge invariance is violated with a photon mass.

• For the fermion masses, we would have (e.g. for the electron) :

meēe = meē

(

1
2
(1− γ5) +

1
2
(1+ γ5)

)

e = me(ēReL + ēLeR)

manifestly non–invariant under SU(2) isospin symmetry tra nsformations.

We need a less “brutal” way to generate particle masses in the SM:

⇒ The Brout-Englert-Higgs mechanism ⇒ the Higgs particle H.
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2. The Higgs mechanism in the SM
In the SM, if gauge boson and fermion masses are put by hand in LSM

breaking of gauge symmetry ⇒ spontaneous EW symmetry breaking:

introduce a new doublet of complex scalar fields: Φ=
(

φ+

φ0

)

, YΦ=+1

with a Lagrangian density that is invariant under SU(2)L ×U(1)Y

LS = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2

µ2 > 0: 4 scalar particles..
µ2 < 0: Φ develops a vev:

〈0|Φ|0〉 = (0
v/

√
2
)

with ≡ v = (−µ2/λ)
1
2

= 246 GeV

– symmetric minimum: instable
– true vaccum: degenerate

⇒ to obtain the physical states,
write LS with the true vacuum
(diagoalised fields/interactions).

0

�

2

> 0

>

�

V(�)

+v

0

�

2

< 0

>

�

V(�)
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2. The Higgs mechanism in the SM

• Write Φ in terms of four fields θ1,2,3(x) and H(x) at 1st order:

Φ(x) = eiθa(x)τ
a(x)/v 1√

2
(0v+H(x)) ≃ 1√

2
(θ2+iθ1
v+H−iθ3

)

• Make a gauge transformation on Φ to go to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) = 1√
2
(0v+H(x))

• Then fully develop the term |DµΦ)|2 of the Lagrangian LS :

|DµΦ)|2 =
∣

∣

(

∂µ − ig1
τa
2
Wa

µ − ig2

2
Bµ

)

Φ
∣

∣

2

= 1
2

∣

∣

∣

∣

(

∂µ− i
2
(g2W

3
µ+g1Bµ)

− ig2
2

(W1
µ+iW2

µ)

− ig2
2

(W1
µ−iW2

µ)

∂µ+
i
2
(g2W3

µ−g1Bµ)

)

(

0
v+H

)

∣

∣

∣

∣

2

= 1
2
(∂µH)2+ 1

8
g2
2(v+H)2|W1

µ+iW2
µ|2+ 1

8
(v +H)2|g2W

3
µ−g1Bµ|2

• Define the new fields W±
µ and Zµ [Aµ is the orthogonal of Zµ]:

W± = 1√
2
(W1

µ ∓W2
µ) , Zµ =

g2W
3
µ−g1Bµ√
g2
2+g2

1

, Aµ =
g2W

3
µ+g1Bµ√
g2
2+g2

1

with sin2 θW ≡ g2/
√

g2
2 + g2

1 = e/g2
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2. The Higgs mechanism in the SM
• And pick up the terms which are bilinear in the fields W±,Z,A:

M2
WW+

µW
−µ + 1

2
M2

ZZµZ
µ + 1

2
M2

AAµA
µ

⇒ 3 degrees of freedom for W±
L ,ZL and thus MW± ,MZ:

MW = 1
2
vg2 , MZ = 1

2
v
√

g2
2 + g2

1 , MA = 0 ,

with the value of the vev given by: v = 1/(
√
2GF)

1/2 ∼ 246 GeV.

⇒ The photon stays massless, U(1)QED is preserved.

• For fermion masses, use same doublet field Φ and its conjugate field

Φ̃ = iτ2Φ
∗ and introduce LYuk which is invariant under SU(2)xU(1):

LYuk=−fe(ē, ν̄)LΦeR − fd(ū, d̄)LΦdR − fu(ū, d̄)LΦ̃uR + · · ·
= − 1√

2
fe(ν̄e, ēL)(

0
v+H)eR · · · = − 1√

2
(v +H)ēLeR · · ·

⇒ me =
fe v√

2
, mu = fu v√

2
, md = fd v√

2

With same Φ, we have generated gauge boson and fermion masses,
while preserving SU(2)xU(1) gauge symmetry (which is now hi dden)!

What about the residual degree of freedom?
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2. The Higgs mechanism in the SM
It will correspond to the physical spin–zero scalar Higgs pa rticle, H.

The kinetic part of H field, 1
2
(∂µH)2, comes from |DµΦ)|2 term.

Mass and self-interaction part from V(Φ) = µ2Φ†Φ+ λ(Φ†Φ)2:

V = µ2

2
(0,v +H)(0v+H) +

λ
2
|(0,v +H)(0v+H)|2

Doing the exercise you find that the Lagrangian containing H i s,

LH = 1
2
(∂µH)(∂µH)−V = 1

2
(∂µH)2 − λv2 H2 − λvH3 − λ

4
H4

The Higgs boson mass is given by: M2
H = 2λv2 = −2µ2.

The Higgs triple and quartic self–interaction vertices are :
gH3 = 3iM2

H/v , gH4 = 3iM2
H/v

2

What about the Higgs boson couplings to gauge bosons and ferm ions?

They were almost derived previously, when we calculated the masses:

LMV
∼ M2

V(1+H/v)2 , Lmf
∼ −mf (1+H/v)

⇒ gHff = imf/v , gHVV = −2iM2
V/v , gHHVV = −2iM2

V/v
2

Since v is known, the only free parameter in the SM is MH or λ.
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2. The Higgs mechanism in the SM
Propagators of gauge and Goldstone bosons in a general ζ gauge:

−→ q
−i

q2−M2
V
+iǫ

[

gµν + (ζ − 1) qµqν
q2−ζM2

V

]

ζ=1: ’t Hooft-Feynman

ζ=∞: Landau gauge

−→ q −i
q2−ζM2

V
+iǫω±, ω0 :

• In unitary gauge, Goldstones do not propagate and gauge boso ns
have usual propagators of massive spin–1 particles (old IVB theory).
• Massive boson polarisations: ǫ±=

1√
2
(0,1,±i,0), ǫL= 1

m
(pZ,0,0,E):

longitudinal polarisation dominates largely, ǫL ∝ E, at high energies..
• At very high energies,

√
s≫MV, a good approximation is MV∼0.

The VL components of V can be replaced by the Goldstones, VL → w.

• In fact, the electroweak equivalence theorem tells that at high energies,
massive vector bosons are equivalent to Goldstones; in VV sc attering eg:

A(V1
L· · ·Vn

L→V1
L· · ·Vn′

L )=(i)n(−i)n
′

A(w1· · ·wn→w1· · ·wn′

)

Thus, we can simply replace Vs by ws in the scalar potential an d use ws:

V =
M2

H

2v
(H2 +w2

0 + 2w+w−)H+
M2

H

8v2 (H
2 +w2

0 + 2w+w−)2
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3. Tests of the Standard Model

Electroweak fermions–gauge boson interactions described by symmetry:
LNC = eJA

µA
µ + g2

cos θW
JZ
µZ

µ , LCC = g2√
2
(J+

µW
+µ + J−

µW
−µ)

JA
µ = Qf f̄γµf , J

Z
µ = 1

4
f̄γµ[v̂f − γ5âf ]f , J

+
µ = 1

2
f̄uγµ(1− γ5)fd

with vf =
v̂f

4sWcW
=

2I3
f
−4Qf s

2
W

4sWcW
, af =

âf

4sWcW
=

2I3
f

4sWcW

3families: complication in CC as current eigenstates 6= mass eigenstates:
connected by a unitary transformation: (d′, s′,b′) = VCKM(d, s,b)
VCKM ≡ 3×3 unitarity matrix; NC are diagonal in both bases (GIM).

Parametrized by 3 angles and 1 CPV phase: great tests at c and b –factories.

In the SM, there are 18 free parameters (ignoring strong CPV a nd ν sector):
• 3 lepton + 6 quark masses + 4 CKM parameters for quark interact ions;
• 3 gauge couplings gs,g2,g1 and 2 parameters µ, λ from scalar potential,

More precise inputs ⇒ αs, α(M
2
Z),GF,MZ and MH (unknown until 2012).

MW and sin2θW predicted: GF√
2
=

πα(M2
Z
)

2M2
W

(1−M2
W

/M2
Z
)
; sin2θW=1− M2

W

M2
Z

.

In fact, they are related by ρ =
M2

W

c2
W

M2
Z

≡ 1 at tree–level in the SM...
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3. Tests of the SM: the gauge sector
To have precise predictions, include the EW+strong radiati ve corrections:
fermion contributions:
light ∝ Logmf/MZ

heavy ∝ m2
t

Higgs contributions:
∝ LogMH/MZ

Direct corrections:
∝ m2

t ,Logmf/MZ

a) f

V V

�� ��

g
q

��

q

b)

��

H

W=Z W=Z

��

H

��

H

t


)

�

�
�

t

�

t

b

�

b

Z

W

�

�

�

�

�

�

�

�

e

�

��

e

W

Z

The dominant corrections are to the running of α and the ρ parameter:
∆α = Πγγ(M

2
Z)−Πγγ(0) ∝ α

π
log

m2
f

M2
2

⇒ σ(e+e− → qq̄) + · · ·
ρ = 1

1−∆ρ
, ∆ρ = ΠWW(0)

M2
W

− ΠZZ(0)

M2
Z

=
3Gµm

2
t

8
√
2π2

− GµM
2
W

8
√
2π2

log
M2

H

M2
W

+ · · ·
• Use 1

α =128.95± 0.03,Gµ = 1.16637 10−5

GeV2 ,MZ=91.187±0.002GeV

• αs=0.1172±0.002 + fermion masses with mt=171±1GeV from Tevatron;

⇒ predict : Γtot
Z ,Γ(Z→ f f̄),Af

FB,ALR,A
f
LR/FB ≡ f(af ,vf ) ⇒ sin2θW

⇒ predict MW (and ΓW) precisely measured at LEP2 and Tevatron.

Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.13/51



3. Tests of the SM: the gauge sector

⇒ High precision tests of the SM performed at quantum level: 1% –0.1%
The SM describes precisely (almost) all available experime ntal data!
• γ,Z to fermions couplings
• Z and W masses/properties
• αS and QCD at LEP+Tevatron
• c,b,t quarks at quark factories
• many low energy experiments

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02766

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01640

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1479

RbRb 0.21629 ± 0.00066 0.21585

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1037

AfbA0,c 0.0707 ± 0.0035 0.0741

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1479

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.392 ± 0.029 80.371

ΓW [GeV]ΓW [GeV] 2.147 ± 0.060 2.091

mt [GeV]mt [GeV] 171.4 ± 2.1 171.7

LEP1, SLC, LEP2, Tevatron

• EW gauge structure tested@LEP2:
self-couplings as dictated by SU(2)!

e+

e−

W+

W−
νe

γ,Z

0

10

20

30

160 180 200

√s (GeV)

σ W
W

 (p
b)

YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)

LEP
PRELIMINARY

11/07/2003

• SU(3)/QCD structure also tested:
αS running +gluon self couplings!
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3. Tests of the SM: constraints on MH

First, there were constraints from pre–LHC experiments: LE P, Tevatron...
Indirect Higgs searches:

H contributes to RC to W/Z masses:

H
W/Z W/Z

Fit the EW precision measurements:
we obtain MH = 92+34

−26 GeV, or

0

1

2

3

4

5

6

10020 400

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02747±0.00012

incl. low Q2 data

Theory uncertainty

MH
<∼ 160 GeV at 95% CL

Direct searches at colliders:

H looked for in e+e−→ZH

e−

e+

Z∗ H

Z

MH > 114.4 GeV @95%CL

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

100 102 104 106 108 110 112 114 116 118 120

MH(GeV)

C
L

s
114.4 115.3

LEP

Observed
Expected for
background

Tevatron MH 6=160−175 GeV
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3. Tests of the SM: constraints on MH

Scattering of massive gauge bosons VLVL → VLVL at high-energy

W−

W+

W−

W+
H H

Because w interactions increase with energy ( qµ terms in V propagator),
s ≫ M2

W ⇒ σ(w+w− → w+w−) ∝ s: ⇒ unitarity violation possible!

Decomposition into partial waves and choose J=0 for s ≫ M2
W:

a0 = − M2
H

8πv2

[

1+
M2

H

s−M2
H

+
M2

H

s
log

(

1+ s

M2
H

)]

For unitarity to be fullfiled, we need the condition |Re(a0)| < 1/2.

• At high energies, s ≫ M2
H,M

2
W, we have: a0

s≫M2
H−→ − M2

H

8πv2

unitarity ⇒ MH
<∼ 870 GeV (MH

<∼ 710 GeV)

• For a very heavy or no Higgs boson, we have: a0

s≪M2
H−→ − s

32πv2

unitarity ⇒ √
s <∼ 1.7 TeV (

√
s <∼ 1.2 TeV)

Otherwise (strong?) New Physics should appear to restore un itarity.
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3. Tests of the SM: constraints on MH

The quartic coupling of the Higgs boson λ (∝ M2
H) increases with energy.

If the Higgs is heavy: the H contributions to λ is by far dominant

+ +

The RGE evolution of λ with Q2 and its solution are given by:

dλ(Q2)

dQ2
=

3

4π2
λ2(Q2) ⇒ λ(Q2)=λ(v2)

[

1− 3

4π2
λ(v2)log

Q2

v2

]−1

• If Q2 ≪ v2, λ(Q2) → 0+: the theory is trivial (no interaction).

• If Q2 ≫ v2, λ(Q2) → ∞: Landau pole at Q = v exp
(

4π2v2

M2
H

)

.

The SM is valid only at scales before λ becomes infinite:
If ΛC = MH, λ <∼ 4π ⇒ MH

<∼ 650 GeV
(comparable to results obtained with simulations on the lat tice!)

If ΛC = MP, λ <∼ 4π ⇒ MH
<∼ 180 GeV

(comparable to exp. limit if SM extrapolated to GUT/Planck s cales)
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3. Tests of the SM: constraints on MH

The top quark and gauge bosons also contribute to the evoluti on of λ.
(contributions dominant (over that of H itself) at low MH values)

H

H H

H
F V

The RGE evolution of the coupling at one–loop is given by

λ(Q2) = λ(v2) + 1
16π2

[

−12
m4

t

v4 + 3
16

(2g4
2 + (g2

2 + g2
1)

2)
]

logQ2

v2

If λ is small (H is light), top loops might lead to λ(0) < λ(v):

v is not the minimum of the potentiel and EW vacuum is instable .

⇒ Impose that the coupling λ stays always positive:

λ(Q2) > 0 ⇒ M2
H > v2

8π2

[

−12
m4

t

v4 + 3
16

(2g4
2 + (g2

2 + g2
1)

2)
]

logQ2

v2

Very strong constraint: Q = ΛC ∼ 1 TeV ⇒ MH
>∼ 70 GeV

(we understand why we have not observed the Higgs bofeore LEP 2...)
If SM up to high scales: Q = MP ∼ 1018 GeV ⇒ MH

>∼ 130 GeV

Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.18/51



3. Tests of the SM: constraints on MH

Combine the two constraints and include all possible effect s:
– corrections at two loops
– theoretical+exp. errors
– other refinements · · ·
ΛC≈1 TeV ⇒ 70<∼MH

<∼700 GeV

ΛC≈ MPl ⇒ 130<∼MH
<∼180 GeV

Cabibbo, Maiani, Parisi, Petronzio

Hambye, Riesselmann

A more up-to date (full two loop) calculation in 2012:
Degrassi et al., Berzukov et al.

At 2–loop for mpole
t =173.1 GeV:

fully stable vaccum MH
>∼ 129 GeV...

but vacuum metastable below!
metastability OK: unstable vacuum
but very long lived τtunel >∼ τuniv...
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4. Higgs decays

Higgs couplings proportional to particle masses: once MH is fixed,

• the profile of the Higgs boson is determined and its decays fixe d,

• the Higgs has tendancy to decay into heaviest available part icle.

Higgs decays into fermions:

f

f̄

H

ΓBorn(H → f f̄) = GµNc

4
√
2π

MH m2
f β

3
f

βf =
√

1− 4m2
f /M

2
H : f velocity

Nc = color number

• Only bb̄, cc̄, τ+τ−, µ+µ− for MH < 350 GeV, also tt̄ beyond.

• Γ ∝ β3: H is CP–even scalar particle ( ∝ β for pseudoscalar H).

• Decay width grows as MH: moderate growth with mass....

• QCD RC: Γ ∝ Γ0[1− αs

π
log

M2
H

m2
q
] ⇒ very large: absorbed/summed

using running masses at scale MH : mb(M
2
H)∼ 2

3
mpole

b ∼3GeV.

• Include also direct QCD corrections (3 loops) and EW (one-lo op).
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4. Higgs decays: fermions

with full QCD

with pole mass

with run. mass

�(H ! b

�

b) [MeV℄

M

H

[GeV℄

160150140130120110100

10
1

with full QCD

with pole mass

with run. mass

�(H ! 
�
) [MeV℄

M

H

[GeV℄

160150140130120110100

1

0.1

Partial widths for the decays H → bb̄ and H → cc̄ as a function of MH:

Q mQ mQ(mQ) mQ(100 GeV)

c 1.64 GeV 1.23 GeV 0.63 GeV
b 4.88 GeV 4.25 GeV 2.95 GeV
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4. Higgs decays: massive gauge bosons

V

V(∗)

H
Γ(H → VV)=

GµM
3
H

16
√
2π
δVβV(1−4x+12x2)

x = M2
V/M

2
H, βV =

√
1− 4x

δW = 2, δZ = 1

• For a very heavy Higgs boson:

Γ(H→WW)=2× Γ(H→ZZ)⇒ BR(WW)∼ 2
3
,BR(ZZ)∼ 1

3

Γ(H → WW + ZZ) ∝ 1
2

M3
H

(1 TeV)3
because of contributions of VL:

heavy Higgs is obese: width very large, comparable to MH at 1 TeV.

EW radiative corrections from scalars large because ∝ λ =
M2

H

2v2 .

• For a light Higgs boson:

MH < 2MV: possibility of off–shell V decays, H → VV∗ → Vff̄ .

Virtuality and addition EW cplg compensated by large gHVV vs gHbb.

In fact: for MH
>∼ 130 GeV, H → WW∗ dominates over H → bb̄.
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4. Higgs decays: massive gauge bosons

Electroweak radiative corrections to H→VV :

Using the low–energy/equivalence theorem for MH≫MV, Born easy..

Γ(H→ZZ)∼Γ(H→w0w0)=
(

1
2MH

)(

2!M2
H

2v

)2
1
2

(

1
8π

)

→ M3
H

32πv2

H→WW: remove statistical factor: Γ(H→W+W−)≃2Γ(H→ZZ).

Include now the one– and two–loop EW corrections from H/W/Z o nly:

ΓH→VV ≃ ΓBorn

[

1+ 3λ̂+ 62λ̂2 +O(λ̂3)
]

; λ̂ = λ/(16π2)

MH ∼ O(10 TeV) ⇒ one–loop term = Born term.
MH ∼ O(1 TeV) ⇒ one–loop term = two–loop term

⇒ for perturbation theory to hold, one should have MH
<∼ 1 TeV.

Approx. same result from the calculation of the fermionic Hi ggs decays:

ΓH→ff ≃ ΓBorn

[

1+ 2λ̂− 32λ̂2 +O(λ̂3)
]
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4. Higgs decays: massive gauge bosons

more convenient, 2+3+4 body decay calculation of H→V∗V∗ :

Γ(H→V∗V∗)= 1
π2

∫M2
H

0

dq2
1MVΓV

(q2
1−M2

V
)2+M2

V
Γ2
V

∫ (MH−q1)2

0

dq2
2MVΓV

(q2
2−M2

V
)2+M2

V
Γ2
V

Γ0

λ(x,y; z) = (1− x/z− y/z)2 − 4xy/z2 with δW/Z= 2/1

Γ0=
GµM

3
H

16
√
2π
δV

√

λ(q2
1,q

2
2;M

2
H)

[

λ(q2
1,q

2
2;M

2
H) +

12q2
1q

2
2

M4
H

]

2{body

3{body

4{body

BR(H !WW )

M

H

[GeV℄

180160140120100

1

0.1

0.01

0.001

2{body

3{body

4{body

BR(H ! ZZ)

M

H

[GeV℄

200180160140120100

0.1

0.01

0.001
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4. Higgs decays: gluons

Q
g

g

H
Γ (H → gg) =

Gµ α2
s M3

H

36
√
2π3

∣

∣

∣

3
4

∑

Q AH
1/2(τQ)

∣

∣

∣

2

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

f(τ) = arcsin2
√
τ for τ = M2

H/4m
2
Q ≤ 1

• Gluons massless and Higgs has no color: must be a loop decay.

• For mQ → ∞, τQ ∼ 0 ⇒ A1/2 = 4
3
= constant and Γ is finite!

Width counts the number of strong inter. particles coupling to Higgs!

• In SM: only top quark loop relevant, b–loop contribution <∼ 5%.

• Loop decay but QCD and top couplings: comparable to cc, ττ .

• Approximation mQ → ∞/τQ = 1 valid for MH
<∼ 2mt = 350 GeV.

Good approximation in decay: include only t–loop with mQ → ∞.

• But very large QCD RC: two– and three–loops have to be include d:

Γ = Γ0[1+ 18αs

π
+ 156α2

s

π2 ] ∼ Γ0[1+ 0.7+ 0.3] ∼ 2Γ0

• Reverse process gg → H very important for Higgs production in pp!
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4. Higgs decays: gluons

Im(A

H
1

)

Re(A

H
1

)

A

H
1

(�

W

)

�

W
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H
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)

A

H
1=2

(�

Q
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�

Q
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3

2.5
2

1.5
1

0.5
0

W and fermion amplitudes in H→γγ as function of τi = M2
H/4M

2
i .

Trick for an easy calculation: low energy theorem for MH≪Mi:
– top loop: works very well for MH

<∼ 2mt ≈ 350 GeV;
– W loop: works approximately for MH

<∼ 2MW ≈ 160 GeV.
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4. Higgs decays: photons

Q,W

γ

γ(Z)

H
Γ=

Gµ α2 M3
H

128
√
2π3

∣

∣

∣

∑

f Nce
2
fA

H
1
2

(τf ) +AH
1 (τW)

∣

∣

∣

2

AH
1/2(τ) = 2[τ + (τ − 1)f(τ)] τ−2

AH
1 (τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)] τ−2

• Photon massless and Higgs has no charge: must be a loop decay.

• In SM: only W–loop and top-loop are relevant (b–loop too smal l).

• For mi → ∞ ⇒ A1/2 = 4
3
and A1 = −7: W loop dominating!

(approximation τW → 0 valid only for MH
<∼ 2MW: relevant here!).

γγ width counts the number of charged particles coupling to Hig gs!

• Loop decay but EW couplings: very small compared to H → gg.

• Rather small QCD (and EW) corrections: only of order αs

π
∼ 5%.

• Reverse process γγ → H important for H production in γγ.

• Same discussions hold qualitatively for loop decay H → Zγ.
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4. Higgs decays: branching ratios

Branching ratios: BR(H → X) ≡ Γ(H→X)
Γ(H→all)

• ’Low mass range’, MH
<∼ 130GeV:

– H → bb̄ dominant, BR = 60–90%

– H → τ+τ−, cc̄,gg BR= a few %

– H → γγ, γZ, BR = a few permille.

• ’High mass range’, MH
>∼ 130GeV:

– H → WW∗,ZZ∗ up to >∼ 2MW

– H → WW,ZZ above (BR → 2
3
, 1
3
)

– H → tt̄ for high MH; BR <∼ 20%.

• Total Higgs decay width:

– O(MeV) for MH∼100 GeV (small)

– O(TeV) for MH ∼ 1 TeV (obese).

Z






t

�

t
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��
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�


��
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4. Higgs decays: total width
Total decay width: ΓH ≡

∑

X Γ(H → X)

• ’Low mass range’, MH
<∼ 130GeV:

– H → bb̄ dominant, BR = 60–90%

– H → τ+τ−, cc̄,gg BR= a few %

– H → γγ, γZ, BR = a few permille.

• ’High mass range’, MH
>∼ 130GeV:

– H → WW∗,ZZ∗ up to >∼ 2MW

– H → WW,ZZ above (BR → 2
3
, 1
3
)

– H → tt̄ for high MH; BR <∼ 20%.

• Total Higgs decay width:

– O(MeV) for MH∼100 GeV (small)

– O(TeV) for MH ∼ 1 TeV (obese).
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5. Higgs production hadron colliders
Main Higgs production channels

q

�q

V

�

�

H

V

Higgs{strahlung

�

q
q

V �

V

�

H

q
q

Ve
tor boson fusion

�

g
g

H

Q

gluon{gluon fusion

�

g
g

H

Q

�

Q

in asso
iated with Q

�

Q

Large production cross sections

with gg → H by far dominant process

1 fb−1⇒O(104) events@lHC

⇒O(103) events @Tevatron

but eg BR(H →γγ,ZZ→4ℓ)≈10−3

... a small # of events at the end...

pp̄→tt̄H

qq̄→Z H

qq̄→WH

qq→qqH

gg→H mt = 173.1 GeV
MSTW2008

√
s = 1.96 TeV
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5. Higgs production at hadron colliders
⇒ an extremely challenging task!

• Huge cross sections for QCD processes
• Small cross sections for EW Higgs signal

S/B >∼ 1010 ⇒ a needle in a haystack!
• Need some strong selection criteria:
– trigger: get rid of uninteresting events...
– select clean channels: H→γγ,VV→ℓ
– use specific kinematic features of Higgs
• Combine # decay/production channels
(and eventually several experiments...)
• Have a precise knowledge of S and B rates
(higher orders can be factor of 2! see later)
• Gigantic experimental + theoretical efforts
(more than 30 years of very hard work!)
For a flavor of how it is complicated from the
theory side: a look at the gg → H case...

pp/pp
_
 cross sections
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5. Higgs production at LHC

Best example of process at LHC to see how things work: gg → H.

g
g

H

P
P

X
X

Z
Z

�

+

�

�

q

�q

hadrons

1

Nev=L×P(g/p)×σ̂(gg→H)× B(H→ZZ)×B(Z → µµ)×BR(Z → qq)

For a large number of events, all these numbers should be larg e!

Two ingredients: hard process ( σ, B) and soft process (PDF, hadr).

Factorization theorem: the two can factorise in production at a scale µF.

The partonic cross section of the subprocess, gg → H, given by:

σ̂(gg → H) =
∫

1
2ŝ

× 1
2·8 × 1

2·8 |MHgg|2 d3pH

(2π)32EH
(2π4)δ4 (q− pH)

Flux factor, color/spin average, matrix element squared, p hase space.

Convolute with gluon densities to obtain total hadronic cro ss section

σ =
∫ 1

0
dx1

∫ 1

0
dx2

π2MH

8ŝ
Γ(H → gg)g(x1)g(x2)δ(ŝ−M2

H)
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5. Higgs production at LHC: premices
The calculation of σborn is not enough in general at pp colliders:

need to include higher order radiative corrections which in troduce
terms of order αn

s log
m(Q/MH) where Q is either large or small...

• Since αs is large, these corrections are in general very important,
⇒ dependence on renormalisation/factorisations scales µR/µF.
• Choose a (natural scale) which absorbs/resums the large log s,
⇒ higher orders provide stability against µR/µF scale variation.

• Since we truncate pert. series: only NLO/NNLO corrections a vailable.
⇒ not known HO (hope small) corrections induce a theoretical e rror.
⇒ the scale variation is a (naive) measure of the HO: must be sma ll.
• Also, precise knowledge of σ is not enough: need to calculate some
kinematical distributions (e.g. pT, η,

dσ
dM

) to distinguish S from B.
• In fact, one has to do this for both the signal and background ( unless
directly measurable from data): the important quantity is s=NS/

√
NB.

⇒ a lot of theoretical work is needed!

But most complicated thing is to actually see the signal for S /B≪1!
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5. Higgs production at LHC: gg fusion

Let us look at this main Higgs production channel at the LHC in detail.

Q
g

g

H σ̂LO(gg → H)= π2

8MH
ΓLO(H → gg)δ(ŝ−M2

H)

σH
0 =

Gµα2
s (µ

2
R
)

288
√
2π

∣

∣

∣

3
4

∑

qA
H
1/2(τQ)

∣

∣

∣

2

Related to the Higgs decay width into gluons discussed previ ously.

• In SM: only top quark loop relevant, b–loop contribution <∼ 5%.

• For mQ → ∞, τQ ∼ 0 ⇒ A1/2 = 4
3
= constant and σ̂ finite.

• Approximation mQ → ∞ valid for MH
<∼ 2mt = 350 GeV.

Gluon luminosities large at high energy+strong QCD and Htt c ouplings

gg → H is the leading production process at the LHC.

• Very large QCD RC: the two– and three–loops have to be include d.

• Also the Higgs PT is zero at LO, must generated at NLO.
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5. Higgs production at LHC: gg fusion
LOa: already at one loop

QCD: exact NLO b : K ≈2 (1.7)
EFT NLOc: good approx.
EFT NNLOd: K ≈3 (2)
EFT NNLLe: ≈ +10% (5%)
EFT other HO f: a few %.

EW: EFT NLO: g: ≈ ± very small
exact NLO h: ≈ ± a few %
QCD+EWi: a few %

Distributions : two programs j

aGeorgi+Glashow+Machacek+Nanopoulos
bSpira+Graudenz+Zerwas+AD (exact)
cSpira+Zerwas+AD; Dawson (EFT)
dHarlander+Kilgore, Anastasiou+Melnikov
Ravindran+Smith+van Neerven

eCatani+de Florian+Grazzini+Nason
fMoch+Vogt; Ahrens et al.
gGambino+AD; Degrassi et al.
hActis+Passarino+Sturm+Uccirati
iAnastasiou+Boughezal+Pietriello
jAnastasiou et al.; Grazzini

The σtheory
gg→H long story (70s–now) ...
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5. Higgs production at LHC: gg fusion

• At NLO: corrections known exactly, i.e. for finite mt and MH:
– quark mass effects are important for MH

>∼ 2mt.
– mt → ∞ is still a good approximation for masses below 300 GeV.
– corrections are large, increase cross section by a factor 2 to 3.
• Corrections have been calculated in mt → ∞ limit beyond NLO.
– moderate increase at NNLO by 30% and stabilisation with sca les...
– soft–gluon resummation performed up to NNLL: ≈ 5–10% effects.
Note 1: NLO corrections to PT, η distributions are also known.
Note 2: NLO EW corrections are also available, they are rathe r small.
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5. Higgs production at LHC: gg fusion

Despite of that, the gg→H cross section still affected by uncertainties
• Higher-order or scale uncertainties:
K-factors large ⇒ HO could be important
HO estimated by varying scales of process

µ0/κ ≤ µR, µF ≤ κµ0

at lHC: µ0=
1
2
MH, κ=2 ⇒ ∆scale≈10%

• gluon PDF+associated αs uncertainties:
gluon PDF at high–x less constrained by data
αs uncertainty (WA, DIS?) affects σ ∝ α2

s⇒ large discrepancy between NNLO PDFs
PDF4LHC recommend: ∆pdf ≈10%@lHC
• Uncertainty from EFT approach at NNLO
mloop ≫ MH good for top if MH

<∼2mt

but not above and not b ( ≈10%), W/Z loops
Estimate from (exact) NLO: ∆EFT≈5%
• Include ∆BR(H→X) of at most few %

total ∆σNNLO
gg→H→X ≈ 20–25%@lHC

LHC-HxsWG; Baglio+AD ⇒

500300115
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5. Higgs production at LHC: VV fusion

q

q
V ∗

V ∗
H

q

q
σ̂LO = 16π2

M3
H

Γ(H → VLVL)
dL
dτ
|VLVL/qq

dL
dτ
|VLVL/qq ∼ α

4π3 (v
2
q + a2

q)
2 log( ŝ

M2
H

)

Three–body final state: analytical expression rather compl icated...
Simple form in LVBA: σ related to Γ(H → VV) and dL

dτ
|VLVL/qq.

Not too bad approximation at
√
ŝ ≫ MH: a factor 2 of accurate.

Large cross section: in particular for small MH and large c.m. energy:
⇒ most important process at the LHC after gg → H.

NLO QCD radiative corrections small: order 10% (also for dis tributions).
In fact: at LO in/out quarks are in color singlets and at NLO: n o gluons
are exchanged between first/second incoming (outgoing) qua rks:
QCD corrections only consist of known corrections to the PDF s!
– NNLO corrections recently calculated in this scheme: very small.
– EW corrections are also small, of order of a few %.
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5. Higgs production at LHC: VV fusion
Kinematics of the process: very specific for scalar particle production....
• Forward jet tagging: the two final jets are very forward peake d.
• They have large energies of O(1 TeV) and sizeable PT of O(MV).
• Central jet vetoing: Higgs decay products are central and is otropic.
• Small hadronic activity in the central region no QCD (trigge r uppon).
⇒ allows to suppress backgrounds to the level of H signal: S/B∼1.

—– lowest/central jet – – highest/central jet

However, the various VBF cuts make the signal theoretically less clean:
– dependence on many cuts and variables, impact of HO less cle ar,
– contamination from the gg→H+jj process not so small...
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5. Higgs production at LHC: associated HV
q

q̄

VV∗

H

σ̂LO =
G2

µM
4
V

288πŝ
×(v̂2

q + â2
q)λ

1/2 λ+12M2
V
/ŝ

(1−M2
V
/ŝ)2

Similar to e+e− → HZ for Higgs@LEP2.

σ̂ ∝ ŝ−1 sizable only for MH
<∼ 200 GeV.

At both LHC/Tevatron: σ(W±H)≈σ(ZH).

In fact, simply Drell–Yan production
of virtual boson with q2 6= M2

V :
σ̂(qq̄ → HV) = σ̂(qq̄ → V∗)

× dΓ
dq2 (V

∗ → HV).
RC ⇒ those of known DY process
(2-loop: gg→HZ in addition).
QCD RC in HV known up to NNLO
(borrowed from Drell-Yan: K ≈ 1.4)
EW RC known at O(α): very small. 0.9
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• Radiative corrections to various distributions are also kn own.
• Process fully implemented in various MC programs used by exp eriments
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5. Higgs production at LHC: associated HV

Up-to-now, it plays a marginal role at the LHC (not a discover channel..).
Interesting topologies: WH→γγℓ,bb̄ℓ,3ℓ and ZH → ℓℓbb̄, ννbb̄.
At high Higgs PT: one can use jet substructure ( H → bb̄ 6= g∗ → qq̄).
Analyses by ATLAS+CMS: 5 σ disc. possible at 14 TeV with L >∼ 100 fb.
But clean channel esp. when normalized to pp→Z: precision process!

However: WH channel is the
most important at Tevatron:
MH

<∼130 GeV: H→bb̄
⇒ ℓνbb̄, νν̄bb̄, ℓ+ℓ−bb̄
(help for HZ → bb̄ℓℓ,bb̄νν)
MH

>∼130 GeV: H→WW∗

⇒ ℓ±ℓ±jj, 3ℓ±

Sensitivity in the low H mass range:
excludes low MH

<∼ 110 GeV values

≈3σ excess for MH=115–135 GeV at the end of the Tevatronn run!
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5. Higgs production at LHC: Htt production
Most complicated process for Higgs
production at hadron colliders:
– qq and gg initial states channels
– three-body massive final states.
– at least 8 particles in final states..
– small Higgs production rates
– very large ttjj+ttbb backgrounds.

NLO QCD corrections calculated:
small K–factors (≈ 1–1.2)
strong reduction of scale variation!
Small corrections to kinematical
distributions (e.g: ptop

T ,PH
T ), etc...

Small uncertainties from HO, PDFs.

Processes with heavy quarks in BSM:
– Single top+Higgs: pp→tH+X.
– Production with bs: pp → bbH.

q̄

q

g t̄

t

H

σ(pp → tt
_ 
H + X) [fb]

√s = 14 TeV

NLO

LO
MH = 120 GeV

µ0 = mt + MH/2

µ/µ0

0.2 0.5 1 2 5
200

400

600

800

1000

1200

1400

• Important for Htt Yukawa coupling!
• Interesting final states: pp → Htt → γγ +X, ννℓ±ℓ∓,bb̄ℓ±.
• Possibility for a 5 signal at MH

<∼ 140 GeV at high luminosities.
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5. Higgs production at LHC: Htt production

Last expectations of ATLAS/CMS...)
At lHC:

√
s=7 TeV and L≈ few fb−1

5σ discovery for MH≈130–200 GeV
95%CL sensitivity for MH

<∼600 GeV
gg→H→γγ (MH

<∼ 130 GeV)
gg→H→ZZ→4ℓ,2ℓ2ν,2ℓ2b
gg→H→WW→ℓνℓν + 0,1 jets
Even better at 8 TeV and higher L!
help from VBF/VH and gg→H→ττ
Tevatron had still some data to analyze
HV →bb̄ℓX@MH

<∼130 GeV!!
Full LHC: same as lHC plus some others
– VBF: qqH → ττ, γγ,ZZ∗,WW∗

– VH→Vbb with jet substructure tech.
– ttH: H→γγ bonus, H →bb̄ hopeless?
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Conclusion? Mission accomplie!
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6. Implications of the discovery

Discovery: a challenge met the 4th of July 2012: a Higgstoric al day.
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6. Implications of the discovery

And the observed new state looks
the long sought SM Higgs boson:
a triumph for high-energy physics!
Indeed, constraints from EW data:
H contributes to the W/Z masses
through tiny quantum fluctuations

H
W/Z W/Z

∝ α
π
log MH

MW
+· · ·

Fit the EW ( <∼ 0.1%) precision data,
with all other SM parameters known,
one obtains MH = 92+34

−26 GeV, or

MH
<∼ 160 GeV at 95% CL

versus “observed” MH=125 GeV.
A very non–trivial check of the SM!
The SM is indeed a very successful theory, tested at the permi lle level...

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded

∆αhad =∆α(5)

0.02750±0.00033

0.02749±0.00010

incl. low Q2 data

Theory uncertainty
July 2011 mLimit = 161 GeV

 (GeV)Xm
120 122 124 126 128 130

S
M

σ/σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 ln
 L

∆
-2

 

0

2

4

6

8

10

12

14

16

18

20

CMS Preliminary -1 12.2 fb≤ = 8 TeV, L s  -1 5.1 fb≤ = 7 TeV, L s

 ZZ→ + H γγ →H 

Frascati, 12-15/05/14 The SM and the Higgs Physics – A. Djouadi – p.45/51



6. Implications of the discovery
But lets check it is indeed a Higgs!

Spin: the state decays into γγ
• not spin–1: Landau–Yang
• could be spin–2 like graviton? Ellis et al.
– miracle that couplings fit that of H,
– “prima facie” evidence against it:

e.g.: cg 6= cγ, cV ≫ 35cγ
many th. analyses (no suspense...)

CP no: even, odd, or mixture?
(more important; CPV in Higgs!)
ATLAS and CMS CP analyses for
pure CP–even vs pure–CP–odd

HVµV
µ versus HǫµνρσZµνZρσ

⇒ dΓ(H→ZZ∗)
dM∗

and dΓ(H→ZZ)
dφ

MELA ≈ 3σ for CP-even..
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6. Implications of the discovery
There are however some problems with this (too simple) pictu re:

– a pure CP odd Higgs does not couple to VV states at tree–level
– coupling should be generated by loops or HOEF: should be sma ll
– H CP–even with small CP–odd admixture: high precision meas urement...
– in H→VV only CP–even component projected out in most cases!

Indirect probe: through µVV

gHVV = cVgµν with cV ≤ 1
better probe: µ̂ZZ=1.1±0.4!

gives upper bound on CP mixture:
ηCP ≡ 1− c2V >∼ 0.5@68%CL

Direct probe: gHff more democratic
⇒ processes with fermion decays.

spin-corelations in qq̄ → HZ → bb̄ll

or later in qq̄/gg → Htt̄ → bb̄tt̄.
Extremely challenging even at HL-LHC... Moreau...
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6. Implications of the discovery

σ×BR rates compatible with
those expected in the SM
Fit of all LHC Higgs data ⇒
µsignal
strength=observ./SM rate:

agreement at 20–30% level!
µATL
tot = 1.30± 0.30
µCMS
tot = 0.87± 0.23

combined : µtot ≃ 1! )µSignal strength (
  -1  0 +1

Combined

 4l→ (*)
 ZZ→H 

γγ →H 

νlν l→ (*)
 WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.8 - 13 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.8 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.9 fb∫ = 8 TeV:  s

-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 126 GeVHm

 0.3± = 1.3 µ

ATLAS Preliminary

SMσ/σBest fit 
0 0.5 1 1.5 2 2.5

 0.28± = 0.92 µ       
 ZZ→H 

 0.20± = 0.68 µ       
 WW→H 

 0.27± = 0.77 µ       
γγ →H 

 0.41± = 1.10 µ       
ττ →H 

 0.62± = 1.15 µ       
 bb→H 

 0.14± = 0.80 µ       
Combined

-1 19.6 fb≤ = 8 TeV, L s  -1 5.1 fb≤ = 7 TeV, L s

CMS Preliminary
 = 0.65

SM
p

 = 125.7 GeVH m

Higgs couplings to elementary particles as predicted by Hig gs mechanism:
• couplings to WW,ZZ, γγ roughly as expected for a CP-even Higgs,
• couplings proportionial to masses as expected for the Higgs boson
So, it is not only a “new particle”, the “126 GeV boson”, a “new state”...

IT IS A HIGGS BOSON!
But is it THE SM Higgs boson or A Higgs boson from some extension?

For the moment, it looks SM-like... Standardissimo (theory of everything)?
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6. Implications of the discovery

Particle spectrum looks complete: no room for 4th fermion ge neration!
Indeed, an extra doublet of quarks and leptons (with heavy ν ′) would:

– increase σ(gg → H) by factor ≈ 9
– H→gg suppresses BR(bb,VV) by ≈2
– strongly suppresses BR(H → γγ)

NLO O(GFm
2
F′) effects very important:

(Direct seach also constraining..) Lenz....

g

g
H

Q Q=t,t’,b’

γ
γ

mb′ =mt′+50 GeV=600 GeV
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MH=125 GeV

Vbb@Tevatron

σ(H)×BR|SM4/SM

mν′ = mℓ′ [GeV]
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6. Implications of the discovery

• For theory to preserve unitarity:
we need Higgs with MH

<∼700 GeV...
We have a Higgs and it is light: OK!

V

V

V

V H

• Extrapolable up to highest scales.
λ = 2M2

H/v evolves with energy
– too high: non perturbativity
– too low: stability of the EW vaccum
λ(Q2)
λ(v2)

≈1+ 3
2M4

W
+M4

Z
−4m4

t

16π2v4 logQ2

v2

λ≥@MPl ⇒ MH
>∼129GeV!

at 2loops for mpole
t =173 GeV.....

⇒ Degrassi et al., Bezrukov et al.
but what is measured mt at TEV/LHC
mpole

t ?mMC
t ? not clear; much better:

mt=171±3GeV from σ(pp → tt̄)
issue needs further studies/checks...

Alekhin....
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6. Implications of the discovery

Thus we have a theory for the strong+electroweak forces, the SM, that is:

• a relativistic quantum field theory based on a gauge symmetry ,
• renormalisable, unitary and perturbative up to the Plankc s cale,
• leads to a (meta)stable electroweak vaccum up to high scales ,
• compatible with (almost) all precision data available to da te...

Is it the theory of eveything and should we be satisfied with it ? No:

The SM can only be a low energy manifestation of a more fundame ntal theory!

Indeed, the SM has the following problems which need to be cur ed:

• “Esthetical” problems with multiple and arbitrary paramet ers.

• “Experimental” problems as it does not explain all seen phen omena.

• ”A theory consistency” problem: the hierarchy/naturalnes s problem.

There must be beyond the Standard Model physics!
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