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I: The SM and EWSB
e The Standard Model in brief
e The Higgs mechanism
e Constraints on Mg

lI: Higgs Physics
e Higgs decays
e Higgs production a hadron colliders
e Implications of the discovery

lll: Beyond the SM:
e \Why beyond the SM?
® The case of SUSY and the MSSM
e \What next? J
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Standard Model describes electromagnetic, strong and w

Electromagnetic interaction (QED):

— Subjects: electric charged particles,
— mediator: one massless photon,
— conserves P, C, T... et of course Q.

Strong (nuclear) interaction (QCD):

— quarks appearing in three q,q ,d,
— interacting via exchange of color,

— mediators: the massless gluons,
— conserves P,C, T and color number;
— color=attractive = confinement!

Weak (nuclear) interaction:

— subjects: all fermions;

— mediators; massive W T, W, Z!
(only short range interaction),

— does not conserve parity:  f, # fR;
(ex: no Yr = I masseless);

— does not conserve CP: np > np.
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The SM of the electromagnetic, weak and strong interactions IS: T
e relativistic quantum field theory: quantum mechanics+spec lal relativity,
e based on gauge symmetry: invariance under internal symmetr y group,
e a carbon—copy of QED, the quantum field theory of electromagn etism.

QED: invariance under local transformations of the abelian group U(1) q:

— transformation of electron field: W (x) — ¥'(x) = e'*¥X) P (x)

— transformation of photon field: A, (x) = A/ (x) = A, (x) — 20,a(x)

The Lagrangian density is invariant under above field transf ormations
LoD = —iFWFW +iW D M — me\TI\IJ

field strength F,, =0,A,—0,A , and cov. derivative D,=0,—ieA,,.

Very simple, consistent, aesthetical and extremely succes sful theory:

e minimal coupling: interaction uniquely determined once gr oup fixed,
e invariance implies massless photon and allows massive ferm lons,
e mathematically consistent: perturbative, unitary, renor malisable,

e very predictive theoretically and very well tested experim entally.
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FSM is based on the gauge symmetry Ggn=SU(3)ecxSU(2)L, x U(1

e The local/gauge symmetry group  SU(3)¢ describes the strong force:

— Interaction between quarks which are SU(3) triplets: q,q, d,
— mediated by 8 gluon Ga corresponding to 8 generators of SU( )
Gell-Man 3 X 3 matrices: [Ta TP] = if**°T, with Tr[T?*T"] = 0ap

— asymptotic freedom: interaction “weak” at high energy, Qg = i—; <1
—> the partons are free at high-energy and confined at low-energ les...
The Lagrangian of the theory is a simple extension of the one o f QED:
£QCD — _iquGZV + iZi aiD. " q; (_ Zi miﬁi‘li)
with G2, = 9,G2 — 9,G3 + g, f*** GPGe¢
=0, — igs Toa G

Interactions/couplings are then uniquely determined by SU (3) structure:

— fermion gauge boson couplings:  —g;¥V 4"
—V self-couplings : ig;1r(0,V,—0,V,)[V,., V. |+ %g? Tr[V,, Vu]2
— the gluons are massless while quarks can be massive (like in QED)...
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FSM is based on the gauge symmetry Ggn=SU(3)cxSU(2), X U(l%-y—‘
e SU(2)r, x U(1)y describes the electromagnetic+weak=EW interaction:

— between the three families of quarks and leptons: /g = %(1 F v5)f
3L.3R Ve —

e—

Yf:fo_2I? = YL:_laYR:_zaYQ:%7YUR:§7YdR:_§

Same holds for the two other generations: (i, v, ¢, s) and (7, ., t, b).
There is no R field (and neutrinos are thus exactly and stay massless).

— mediated by the WL (isospin) and Bu (hypercharge) gauge bosons
corresping to the 3 generators (Pauli matrices) of SU(2) and are massless
T2 = 272; [T? TP =ie*P°T, and [Y,Y]=0.
Lagrangian simple: with fields strengths and covariant deri vatives as QED
W2, =0, W2—9,Wa+g,e®*WPW¢, B, =9,B,—0,B,
D, = (9, —igTaW2 —ig’YB,) v, T2 = 1r2
\—ESM = —iWZVWQW — iBW/B“V -+ FLi iDILﬂ/M Fr; + tri iDpﬂ/“ fRJ
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But if gauge boson and fermion masses are put by hand in L
f %M%V“VM and/or m¢ff terms: breaking of gauge symmetry. T
This statement can be visualized by taking the example of QED where
the photon is massless because of the local ~ U(1)q local symmetry:

T (x) = U (x) = OW(x) | A,(x) = AL(x)=A,(x)—1d,0(x)

e For the photon (or B field for instance) mass we would have:

1N\ g2 1N\ 2 1 1 1N\ 2
and thus, gauge invariance is violated with a photon mass.

e For the fermion masses, we would have (e.g. for the electron)

megee = meé(%(l —v5) + %(1 + 75)>e = me(€rer, + €Ler)
manifestly non—invariant under SU(2) isospin symmetry tra nsformations.
We need a less “brutal” way to generate particle masses in the SM:
L —> The Brout-Englert-Higgs mechanism = the Higgs particle H. J
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In the SM, if gauge boson and fermion masses are put by hand in Lg

breaking of gauge symmetry = spontaneous EW symmetry breaking:

introduce a new doublet of complex scalar fields: P — j;(f  Yea=+1
with a Lagrangian density that is invariant under ~ SU(2)p, x U(1)y
Ls = (D"®)'(D,®) — 12®'® — \(PTP)?
1? > 0: 4 scalar particles..
11? < 0: @ develops a vev:

0/®[0) = ()
with = v = (—p?/)\)
= 246 GeV

— symmetric minimum: instable
— true vaccum: degenerate

V(o) V(o)

N | =

—> to obtain the physical states,
write Lg with the true vacuum

(diagoalised fields/interactions). Re(t) J

=

Frascati, 12-15/05/14 The SM and the Higgs Physics — A. Djouadi — p.7/51



|70 Write & in terms of four fields 67 2 3(x) and H(x) at 1st order: T

105 (x)72(x)/V ~ 02+i0
Q)(X) — e9 (x)T2(x)/ %(?/—I—H(x)) ~ %(Vz_:_H_liQ:;)

e Make a gauge transformation on P to go to the unitary gauge:

P (x) — e T B (x) = %(&FH(X))

e Then fully develop the term  |D,®)|? of the Lagrangian Lg:
D,®)? = |(9, — ig1 2 W3 — i%B,) &/’
(%igzé(ngerngu) _ig22i(wi—iwﬁ) > (0 )

— B2 (W1+iw2) Outs(g2Wi-g1By) | \WTH
=3(0.H)?*+ 583 (v+H)* (W, +iW3 2+ 5(v + H)?|g. W), —g:B,, |2
e Define the new fields Wf and Z, [A , is the orthogonal of Z,,]:

3 3
Wt — L (w1l W2 g2W: —g1B, g2 Wi +g1By,

\— with sin? Oy = gz/\/gg T g% = e/g2 J
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f. And pick up the terms which are bilinear in the fields W= Z. A: T
2 - 1N\ A2 1n\A2
= 3 degrees of freedom for Wf, Z1, and thus M=, My:
Mw = 3vg2, Mz = 3v/g5 +g7, Ma =0,
with the value of the vev givenby: v = 1/(v/2Gg)'/2 ~ 246 GeV.

—> The photon stays massless, U(l)QED IS preserved.

e For fermion masses, use same _doublet field P and its conjugate field

~

® = i, P* and introduce Ly Which is invariant under SU(2)xU(1):
'CYuk:_fe(é, D)L(I)eR — fd(l_l, (_i)LCI>dR — fu(ﬁ7 a)L&)uR + ..

—%fe(ﬂea eL)(V4m)er - = —%(V + H)érer - -

— fev _ fuv fav
= Mg — V2 my, — NoBR my = V2
With same P, we have generated gauge boson and fermion masses,
while preserving SU(2)xU(1) gauge symmetry (which is now hi dden)!
L What about the residual degree of freedom? J
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It will correspond to the physical spin—zero scalar Higgs pa rticle, H.
The kinetic part of H field, (9, H)?, comes from |D,®)|? term. T
Mass and self- interaction partfrom  V(®) = p2®Td + \(®TP)2:
V= 2(0,v+H)( ) +30,v+H) (O, )
Doing the exercise you find that the Lagrangian containing H i S,
Ly =1(0,H)(0"H) -V = 2(0"H)®> — \Wv?*H? — \WwH? - 2 H*
The Higgs boson mass is given by: ~ M# = 2\v? = —242.
The Higgs triple and quartic self—interaction vertices are
gps = 3IM% /v, gue = 3iM3F /v?
What about the Higgs boson couplings to gauge bosons and ferm lons?
They were almost derived previously, when we calculated the masses:
Laiy ~ M2(1+H/V)? | L, ~ —mg(1+H/v)
= GHff = lmf/V guvv = —2iM% /v, guavv = —2iMg, /v?
L Since v is known, the only free parameter in the SM is Mg or . J
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Propagators of gauge and Goldstone bosons in a general ( gauge:
WVaVAVAVAVAYAY , ( =o0: Landau gauge—‘
_ZQ _ | g _"_ (C L 1) qudv .
—q 2— Mg +ie | THY

+ 0. _--49._ —1
W, w g2 —CM?32 +ie

¢ = 1: 't Hooft-Feynman

e In unitary gauge, Goldstones do not propagate and gauge boso ns

have usual propagators of massive spin—1 particles (old VB theory).

e Massive boson polarisations: €4 = %(O, 1,4,0), e, = =(pz, 0,0, E):
longitudinal polarisation dominates largely, €1, < B, at high energies..

e At very high energies, \/§>> M/, a good approximationis My ~ 0.
The V1, components of V can be replaced by the Goldstones, Vi — w.

e In fact, the electroweak equivalence theorem tells that at high energies,
massive vector bosons are equivalent to Goldstones; in VV sc attering eg:

AVE-VESVE VI =) (-)YA(wW! - - wP s wl . ow™)
Thus, we can simply replace Vs by ws in the scalar potential an d use ws:
C V="HE?f w2t 2wtw )H + SE(H2 4 wE 4 2wiw)? |
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lectroweak fermions—gauge boson interactions described by symmetry:
Lne = e.]f;A“ + 227", Loc = %(J:Wjﬂ” +J WH)
— fo’Y,qu 9 Jg - if%u[vf o ,Y5éf]f 9 J: — %fu’Y,LL(]- o 75)fd

~ 3 2 ~ 3
4SW Cw 4SW Cw ? 4SW Cw 4SW Cw

with v =

3families: complication in CC as current eigenstates = mass eigenstates:

connected by a unitary transformation:  (d’,s’,b’) = Vexm(d, s, b)

Vcoxkym = 3 X 3 unitarity matrix; NC are diagonal in both bases (GIM).
Parametrized by 3 angles and 1 CPV phase: greattestsatcand b  —factories.

In the SM, there are 18 free parameters (ignoring strong CPV a nd v sector):

e 3 lepton + 6 quark masses + 4 CKM parameters for quark interact lons;

e 3 gauge couplings gs, g2, g1 and 2 parameters [, A from scalar potential,
More precise inputs = o, @(M2), Gg, Mz and Mg (unknown until 2012).

T 2
Mw and sin?w predicted: ?/g VE: (f(Mé)/M 7y sin?fw =1 — 1\1\/22 .

1 at tree—level in the SM... J

Lln fact, they are related by p = CMM2 =
W Z
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0 have precise predictions, include the EW+strong radiati ve correctlon
fermion contributions:

g o Logmi/Mi @ w@w
heavy o mjg

Higgs contributions: W/Z TN wyz ett

Direct corrections: z !
2
x m{, Logm¢ /My

The dominant corrections are to the running 2of « and the p parameter:
Aa =1L, (M7) — IL,;(0) x flogys = o(efe™ — qq) +

1 _ Oww(0) Hgz(0) _ 8Gm2  G.MZ,; M}
p=7 Ap, Ap = M2, v 8\/_7r o logM%V

e Use E =128.95+0.03, G, = 1. 16637Gr V2 ,M7z=91.1874+0.002GeV

o s —=0.1172+0.002 + fermion masses with m¢=171+1GeV from Tevatron;
= predict : Tt T'(Z —ff), AL, Apg, AiR/FB = f(ag, v¢) = sin?fw
\_: predict MW (and I'yy) precisely measured at LEP2 and Tevatron. J
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—> High precision tests of the SM performed at quantum level: 1% —O.Iﬁ

The SM describes precisely (almost) all available experime

® ~v,Z to fermions couplings

e Z and W masses/properties

e (xg and QCD at LEP+Tevatron
e Cc,b,t quarks at quark factories

e many low energy experiments

Measurement Fit  |O™-0"|/gMea
o 1 2

3
m,[GeV] 91.1875+0.0021 91.1874
r,[Gev]  2.4952+0.0023  2.4957
ol [nb]  41540+0.037  41.477
R, 20.767 £0.025  20.744
A 0.01714 + 0.00095 0.01640
Ry 0.21629 + 0.00066 0.21585
R, 0.1721+0.0030  0.1722
ADP 0.0992 +0.0016  0.1037
AYS 0.0707 £0.0035  0.0741
A, 0.923 +0.020 0.935
A, 0.670 £ 0.027 0.668
A(SLD) 0.1513+0.0021  0.1479
m, [GeV]  80.392+0.029  80.371
rylGevl  2.147+0.060 2.091
m, [GeV] 171.4£2.1 171.7

LEP1, SLC, LEP2, Tevatron
Frascati, 12-15/05/14

ntal data!

e EW gauge structure tested@LEP2:
self-couplings as dictated by SU(2)!
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e SU(3)/QCD structure also tested:
(g running +gluon self couplings!
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3. Testsof the SM: constraintson Mg

First, there were constraints from pre—LHC experiments: LE

Indirect Higgs searches:

H contributes to RC to W/Z masses:

W/Z W/Z

Fit the EW precision measurements:

we obtain My = 92+ ¢ GeV, or

® -
s Aahad -
i i —0.02761:0.00036 | f:
i i - 0.02747+0.00012 [ ¢
- incl. low Q? data '.

sz
¢

| Excluded

47 Prellmlnary

© 100

m,, [GeV]
LMH < 160 GeV at 95% CL

400
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fScattering of massive gauge bosons V1, Vi, — VLV at high-energyT

W+m W+ @ ’\/\/\/\/\{\/\/\/\/\/
H &i: -
_——— : H

W~ W™ AWV

Because w interactions increase with energy (" terms in V propagator),
s> M3, = o(Wrw™ — ww™)  s: = unitarity violation possible!

Decomposition into partial waves and choose J=0 for S > M%V:

M?2 M?2 M?2
0 = —grok |1+ iy + "log (1+ 537 ) |
For unitarity to be fullfiled, we need the conditon ~ |Re(ag)| < 1/2.

. . s>Mp M2
e At high energies, s> MZ%, M2, we have: ag — — %
H> 8TV

unitarity = My < 870 GeV (Mpy < 710 GeV)

_ s<M%,
e For a very heavy or no Higgs boson, we have: apg —

unitarity = /s S 1.7 TeV (/s < 1.2 TeV)
Otherwise (strong?) New Physics should appear to restore un itarity.
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he quartic coupling of the Higgs boson A (X M%I) Increases with energﬂ

If the Higgs is heavy: the H contributions to A is by far dominant

~
fo\

-’ ~ o .- ~ AN 7
~ -’ ~ - ~ - -, N s
~ ’, S - ~ - ~ 7’
S -, = ~ ’ \ - \ ’
N e 1 ~ ] e N 7
x ) > )< x
PRERN \ PR ~ /N
S [ - \ / ~ 777N
S -, ~_- ~ 7
~ _- ~ o - ~ 4
~ - ~ 7’ ~ 7\

The RGE evolution of \ with Q2 and its solution are given by:

dA(Q?) 3 3 Q2]
= A2(Q3) = MQH) =MV [1——)\(V)]log——
o If Q% <« v?, A\(Q?) — 0,.: the theory is trivial (no interaction).
o If Q% > v? A(Q?) — oco: Landau pole at Q = v exp (417{:%’2).
The SM is valid only at scales before A\ becomes infinite:
If Ac = Mg, A S 41 = Mg < 650 GeV
(comparable to results obtained with simulations on the lat tice!)
If Ac = Mp, A S 41 = My S 180 GeV
\_(comparable to exp. limit if SM extrapolated to GUT/Planck s cales) J
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The top quark and gauge bosons also contribute to the evoluti on of A.
(contributions dominant (over that of H itself) at low M values)

Lo . %E -----
F
H ...L 1 ____. H @ . davweee--
The RGE evolution of the coupling at one—loop is given by

MQ2) = A(V?) + gz | 125 + & (283 + (g3 + 82)%)| log %
If \is small (H is light), top loops mightlead to ~ A(0) < A(Vv):

v is not the minimum of the potentiel and EW vacuum is instable

= Impose that the coupling A stays always positive:
mé 2
ANQ?) >0=M; > %, [—12V—; + = (2g3 + (83 + g%)z)} log %
Very strong constraint: () = Ac ~1TeV = My 2 70 GeV

(we understand why we have not observed the Higgs bofeore LEP 2...)
Llf SMup to high scales: Q = Mp ~ 10®* GeV = My = 130 GeJ
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3. Testsof the SM: constraintson Mg

Combine the two constraints and include all possible effect S:

f— corrections at two loops T T T ﬂ
— theoretical+exp. errors
— other refinements - - - >

Ac~1TeV = T0<SMu <700 GeV = 4
Ac~ Mp; = 130<Mg <180 GeV "

600 m, = 175 GeV

o (M;) = 0.118

|llll|llll|lll

. o . . 200
Cabibbo, Maiani, Parisi, Petronzio =
Hambye, RIeSSG|mann 0 | I | ] I | ] I | ] I [ 1 |7
103 10® 109 1012 1015 1018

o A [GeV]
A more up-to date (full two loop) calculation in 2012:

Degrassi et al., Berzukov et al.

At 2-loop for mP°'°=173.1 GeV:

fully stable vaccum Mg 2 129 GeV...
but vacuum metastable below!

metastability OK: unstable vacuum

but very long lived Tiunel < Tuniv--- Higes massm n G
Frascati, 12-15/05/14 The SM and the Higgs Physics — A. Djouadi — p.19/51
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inggs couplings proportional to particle masses: once My is fixed, T
e the profile of the Higgs boson is determined and its decays fixe d,

e the Higgs has tendancy to decay into heaviest available part icle.

Higgs decays into fermions: ro G.Nc

f Lo (H — £F) = 25 My m3 53
______ B = /1 —4m2/M?% : f velocity

f N. = color number

e Only bb,cc, 777, ut ™ for My < 350 GeV, also tt beyond.
o' x 63: H is CP—even scalar particle ( o< (3 for pseudoscalar H).

e Decay width grows as MH moderate growth with mass....

e QCDRC: I' «x I'p|1 — log ] = very large: absorbed/summed

using running masses at scale MH - mp(MZ) ~2mP°°~ 3 GeV.
Lo Include also direct QCD corrections (3 loops) and EW (one-lo op). J
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10 | | | I I L I I I I I T
f L T(H = bb) [MeV] ) [ ['(H — ct) [MeV] ) T

--------
- -
-----------
------
- -
-------
_____
---------
-
------
- -
- -
-
-

P

i with full QCD 1
- _ with full QCD
with run. mass 0.1 - .

with run. mass

1100 110 120 130 140 150 160 100 110 120 130 140 150 160
My [GeV] Mp [GeV]
Partial widths for the decays H — bb and H — c¢ as a function of My
Q mq mQ(mQ) EQ(lOO GeV)
C 1.64 GeV 1.23 GeV 0.63 GeV
\— b 4.88 GeV 4.25 GeV 2.95 GeV J
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G, M3
| o V. D(H - VV)= 95 5 (1-dxr12x) |
X:M%/M%—Iaﬁvz\/l—élX
5W:2, oz =1

\/(*)

e [or a very heavy Higgs boson:

I'H-WW)=2 x I‘(H% ZZ) = BR(WW)~ 2 BR(ZZ)~
M3

I'H— WW + ZZ) x 2 1 Te V)3

heavy Higgs is obese: width very large, comparable to My at 1 TeV.

M,

2v2 "

1
3

because of contributions of V7.:

EW radiative corrections from scalars large because X\ =

e For a light Higgs boson:

Mpyg < 2My: possibility of off-shell V decays, H — VV* — VIff.

Virtuality and addition EW cplg compensated by large gHvv VS €Hbb-
Lln fact: for My > 130 GeV, H — WW* dominates over H — bb. J
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f Electroweak radiative correctionsto H—VV : T

Using the low—energy/equivalence theorem for My > My, Born easy..
2 2 3
[ (H—ZZ) ~T(H—wowo) = (55 ) (502 ) 3 (&) = mort

2M g 2v 2 \ 87 " 327v2

H — WW: remove statistical factor: T'(H—WTW™)~2T'(H—ZZ).

Include now the one— and two—loop EW corrections from H/W/Z o nly:

Taovy ~ Tiom [1 + 33 + 6232 + (9(&3)} A= )/(1672)
Mg ~ O(10 TeV) = one-loop term = Born term.
Mg ~ O(1 TeV) = one-loop term = two—loop term
—> for perturbation theory to hold, one should have Mp S 1 Tev
Approx. same result from the calculation of the fermionic Hi ggs decays:
T ~ Do [1 28— 3232 4+ 0(5\3)}
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4. Higgs decays. massive gauge bosons

f more convenient, 2+3+4 body decay calculatonof H-—V*V*: T

xx7*x) __ 1 M? dq?My T (Mg—q )qu21\/[ r
F(H—V'V )_71'_2 0 ag—M]%,)z\—/H\X%,r%, 0 ; (qlg—M%,)zYth%,r%,FO
Ax,y;z) = (1 —x/z —y/z)? — 4xy/z* with Ow,z=2/1

G M3 12q2 g2
Lo = Seatov /A (a?, oF M) | Ma?, af M) + 5% |

1 C

| BR(H — 22)

0.1
0.1F -

0.01
0.01 C

0.001 ' ' L 0.001 L ' ' ' L

100 120 140 160 180 100 120 140 160 180 200
My [GeV] Mp [GeV]
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G, a2 M3 2
T T e = SR [§ T Al (]|
T Al)p(T) =2[r + (1 — )f(7)] 777
"0000° f(7) = arcsin® /7 for 7 = M /4m? <1

e Gluons massless and Higgs has no color: must be a loop decay.

e Formg — 00,7q ~ 0 = A1/2 = % — constant and 1 is finite!

Width counts the number of strong inter. particles coupling to Higgs!
e In SM: only top quark loop relevant, b—loop contribution < 5%.
e Loop decay but QCD and top couplings: comparable to cc, TT.

e Approximation mg — 00/7q = 1 valid for My < 2m¢ = 350 GeV.
Good approximation in decay: include only t—loop with mgqg — Q.
e But very large QCD RC: two— and three—loops have to be include d:
' = To[1 + 182 + 156%] ~ Tg[1 + 0.7 + 0.3] ~ 2T,
\_o Reverse process gg — H very important for Higgs production in pp! J
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W and fermion amplitudes in  H —~+y as function of 73 = M3 /4M?.

Trick for an easy calculation: low energy theorem for My < Mi:
— top loop: works very well for Mg < 2my =~ 350 GeV;
L W loop: works approximately for My S 2Mw =~ 160 GeV. J
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G, o M
f Y I'= 128 \/_7T3 Zf NCG%AI;(Tf) T A:IL_I(TW)

(2) ALy(r) =2[r + (1 — Df(7)] 72
AP (7)) = —[272 + 37 + 3(27 — 1)f(7)] 72

e Photon massless and Higgs has no charge: must be a loop decay.
e In SM: only W-loop and top-loop are relevant (b—loop too smal ).
e Form; — 00 = Ay/p = 4 and A; = —7: W loop dominating!
(approximation Ty — Ovalld only for Mg S 2Mw: relevant here!).
7y width counts the number of charged particles coupling to Hig gs!
e Loop decay but EW couplings: very small compared to H — gg.
e Rather small QCD (and EW) corrections: only of order —S ~ 5%.
e Reverse process 7y — H important for H productionin .
\_o Same discussions hold qualitatively for loop decay H — Z~. J
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— T(H—all)

f Branching ratios: BR(H — X)) = L'(H—X) T

e 'Low mass range’, Mg < 130GeV:
- H — bb dominant, BR = 60-90%
-H — 7777, cC, gg BR= afew %

0.1F
- H — vv,v%, BR = a few permille. '

e 'High mass range’, Mg = 130 GeV:
-H - WW* ZZ* upto 2 ZMW i
-H — WW, ZZ above (BR — 3, 3) -
~H — tt for high Myg; BR < 20%. 000133\

e Total Higgs decay width:
— O(MeV) for My ~100 GeV (small) | |

100 130 160 200 300 500 700 1000
— O(TeV) for Mg ~ 1 TeV (obese). My [GeV]
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Total decay width: 'y = )  I'(H — X) T

e 'Low mass range’, Mg < 130 GeV: W . | |

—H — bb dominant, BR = 60-90% - T(H) [GeV]
100

-H — 7777, cC, gg BR= afew %
- H — v7v,v4, BR = a few permille. ok
e 'High mass range’, Mg 2 130 GeV: |
-H—> WW* ZZ" upto 2> ZMW

-H — WW, ZZ above (BR — 3, 3) ol
~H — tt for high Myg; BR < 20%.

lF

e Total Higgs decay width: M

— OMeV) for Mg ~100 GeV (small) , L.+ | L
100 130 160 200 300 300 700 1000
— O(TeV) for My ~ 1 TeV (obese). My [GeV]

o |
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5. Higgs production hadron colliders

ain Higgs production channels §
F T T T T T T T T T ]
: o(pp — H + X)) [pb] §
Higgs—strahlung Vector boson fusion - Vs =1.96 TeV ]
MSTW2008 .
7 v q 1L gg—H my = 173.1 GeV
V* F
\\\ q(I*)WH ..
q “H q 0L d@a—zH ................. )
F qq—qqH “-"-“::.‘-‘.::.‘-"-'-'=-_._,_:l _______________ E
gluon—gluon fusion in associated with QQ I ""'ﬂ"-"‘""-
9 B N |
» ! S |
————— ¢-----H C
g D000 g 00000 ——— Q@ i | | | | | , | |
0.001
114 120 130 140 150 160 170 180 190 200
. . 100 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Large production cross sections o(pp — H + X) [pb]
Vs =8 TeV
gg—H MSTW2008

with gg — H by far dominant process 10}
1fb~! = O(10%) events@IHC

my = 173.1 GeV

= (0(10°) events @Tevatron w2 ::::::::-~~-...,,,: ..................................................
put eg BR(H — 77, ZZ — 40) 103 o™ ™ — f‘
... a small # of events at the end... . N, |
115 140 16&/}18;) Tgev] 300 400 50
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f —> an extremely challenging task!
L

Huge cross sections for QCD processes
e Small cross sections for EW Higgs signal
S/IB 2> 10'° = aneedle in a haystack!
e Need some strong selection criteria: 10",

- s
— trigger: get rid of uninteresting events... %12 Ora 8—@@——0”
— select clean channels: H—~vy, VV —/ 1 g /E/
— use specific kinematic features of Higgs iz o
e Combine # decay/production channels o’ /?
(and eventually several experiments...) o "ia(Ef‘”“j;W?é?/
e Have a precise knowledge of S and B rates 0% g e ey ]
(higher orders can be factor of 2! see later) ig />§
e Gigantic experimental + theoretical efforts S N
(more than 30 years of very hard work!) 120(:’gi:0))><><
For a flavor of how it is complicated from the S P
\_theory side: alook atthe gg — H case... ™ — fS(GeV)J
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fBest example of process at LHC to see how things work: gg — H. T

hadrons

Nev=LXxP(g/p)xc(gg—H)x B(H—7ZZ)xB(Z — pupu)xBR(Z — qq)
For a large number of events, all these numbers should be larg e!
Two ingredients: hard process (¢, B) and soft process (PDF, hadr).
Factorization theorem: the two can factorise in production at a scale up.
The partonic cross section of the subprocess, gg — H, given by:
5(gg — H) = [ 35 X 35 X 35| Mugg|* Gofit—(27%)6* (4 — pn)
Flux factor, color/spin average, matrix element squared, p hase space.

Convolute with gluon densities to obtain total hadronic cro Ss section
1 1 M A 2
0 = fo dxy fo dxa = % I'H — gg)g(x1)g(x2)d(8 — M)
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The calculation of o0y, IS NOt enough in general at pp colliders:
fneed to include higher order radiative corrections which in troduce T
terms of order a2 log™(Q/My) where Q is either large or small...
® Since « Is large, these corrections are in general very important,
= dependence on renormalisation/factorisations scales UR/ IF.
® Choose a (natural scale) which absorbs/resums the large log S,
—> higher orders provide stability against ,LLR/ILLF scale variation.

® Since we truncate pert. series: only NLO/NNLO correctionsa  vailable.
— not known HO (hope small) corrections induce a theoretical e rror.

—> the scale variation is a (naive) measure of the HO: must be sma II.

e Also, precise knowledge of ¢ is not enough need to calculate some
kinematical distributions (e.g. pT, 1, dM) to distinguish S from B.

e In fact, one has to do this for both the signal and background ( unless
directly measurable from data): the important quantity is s:NS/\/NB.

—> a lot of theoretical work is needed!

But most complicated thing is to actually see the signal for S /B!
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fLet us look at this main Higgs production channel at the LHC in detail.j

“0000)

A 7T2
A PN oro(gg — H) =g

J GuoZ(13)
T ol = Seoslin) | 357 A (7g)

(H — gg)d(s — M§)

2

Related to the Higgs decay width into gluons discussed previ ously.

e In SM: only top quark loop relevant, b—loop contribution < 5%.

eFormgqg — 00, 7q ~ 0= Ay/p = 4 — constant and ¢ finite.

e Approximation Img — oo valid for MH 2m; = 350 GeV.

Gluon luminosities large at high energy+strong QCD and Htt c ouplings

gg — H is the leading production process at the LHC.

e Very large QCD RC: the two— and three—loops have to be include  d.

L. Also the Higgs P is zero at LO, must generated at NLO. J
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OFf: already at one loop The otheory
QCD: exact NLOP: K ~2 (1.7) gg—H
EFT NLOL: good approx. g ‘o000 H
EFT NNLOY: K ~3 (2) > -----
EFT NNLLE: ~ +10% (5%) J oo

EW: EFT NLO: 8: =~ =+ very small

EFT other HOf: a few %. :E> _____ R
00000

exact NLO[™: =~ + a few %

QCD+EW!: a few % :E} _____ :E:

Distributions : two programs |

o

long story (70s—now) T

2Georgi+Glashow+Machacek+Nanopoulos :
PSpira+Graudenz+Zerwas+AD (exact) oL
“Spira+Zerwas+AD; Dawson (EFT)

OIHarIander+KiIgore, Anastasiou+Melnikov 15[

Ravindran+Smith+van Neerven

€Catani+de Florian+Grazzini+Nason RN

fMoch+Vogt; Ahrens et al.
9Gambino+AD; Degrassi et al.

h Actis+Passarino+Sturm+Uccirati

05!

o(pp — H+X) [pb]

--- NLO

—— 80

T T T

'Anastasiou+Boughezal+Pietriello 100

JAnastasiou et al.: Grazzini
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e At NLO: corrections known exactly, i.e. for finite m; and My: T
— quark mass effects are important for My = 2m;.

—Imy — o0 is still a good approximation for masses below 300 GeV.

— corrections are large, increase cross section by a factor 2 to 3.

e Corrections have been calculated in  m; — o< limit beyond NLO.

— moderate increase at NNLO by 30% and stabilisation with sca les...

— soft—gluon resummation performed up to NNLL: ~ 5—-10% effects.

Note 1: NLO correctionsto P, 7 distributions are also known.

Note 2: NLO EW corrections are also available, they are rathe  r small.

O ' ] ' ' o(pp - H+X) [ph] Vs=14TeV
2.5 K(gg—)H) 3+ K(gg_)H) i R L N L B A B LA B
2 = 25 ]
] Ko
15F Ko . 2r o }
1.5 ]
L i | 10t
e B8 U By e . *
"E Kvirt - 051 Kvirt |
] — Wi - 1 IO Koo -
Kog Ky e,
8 . . . . L _O.r_ - 1 oo e b b b b b b b
03 - o0 1o o o 0 100120 140 160 180 200 220 240 260 280 300
My [GeV] My [GeV] M., [GeV]
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Despite of that, the gg — H cross section still affected by uncertamtleST

e Higher-order or scale uncertainties:
K-factors large — HO could be important
HO estimated by varying scales of process

po/k < piR, pir < FKjlo
at IHC: Ho = %MH, K=2 = Ascale ~ 10%
e gluon PDF+associated «g uncertainties:
gluon PDF at high—x less constrained by data
/s uncertainty (WA, DIS?) affects o0 a

—> large discrepancy between NNLO PDFs
PDF4LHC recommend: Apqr~10%QIHC

e Uncertainty from EFT approach at NNLO
Mjoop > My good for top if My S2my

but not above and notb ( =~ 10%), W/Z loops
Estimate from (exact) NLO: Agpr~ 5%

e Include ABR(H—X) of at most few %

total Aog N0 x & 20-25%@IHC

Frascati, 12-15/05/14
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0.8 F
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1.0

0.8

Vs =

o(gg — H) [pb]
7 TeV JRO9

MSTW ——
ABKM ——

HERAPDF (as =0.1145)
HERAPDF (ag=0.1176

09 b

115

300

500

150
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My [GeV]

ATTo(gg — H) 4]

Vs =17 TeV
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f V*q 5-LO — 113[7:;2:[‘(]:—1 — VLVL)%’VLVL/qq —‘

dL Q 2 2\2 S
q V*C] d_T’VLVL/qq ~ m(vq + aq) log(MIZ{)
Three—body final state: analytical expression rather compl iIcated...

Simple form in LVBA: o related to I'(H — VV) and 2|y, v, /qq-

Not too bad approximation at \@ > My: afactor 2 of accurate.

Large cross section: in particular for small My and large c.m. energy:
= most important process at the LHC after gg — H.

NLO QCD radiative corrections small: order 10% (also for dis tributions).

In fact: at LO in/out quarks are in color singlets and at NLO: n 0 gluons

are exchanged between first/second incoming (outgoing) qua rks:

QCD corrections only consist of known corrections to the PDF s!

— NNLO corrections recently calculated in this scheme: very small.
— EW corrections are also small, of order of a few %.
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fKinematics of the process: very specific for scalar particle production.ﬂ

e Forward jet tagging: the two final jets are very forward peake d.

e They have large energies of (1 TeV) and sizeable P of C’)(MV)
e Central jet vetoing: Higgs decay products are central and is otropic.
e Small hadronic activity in the central region no QCD (trigge r uppon).

—> allows to suppress backgrounds to the level of H signal: S/B ~ 1.
10711 1T T ] BT 11 ]
LHC (a) ] i LHC (b) ]
pp - HjiX 1 r pp ~ HjX 1

my=120 GeV

2000~ m =120 Gev 7

[02)
o
—

[1b]

1500 |

[
o

do/dn;

1000 |

do/dpy [fb/GeV]
N
(S

500 |

[AN)
o

OO/ 25 560 75 100 125 150
py [GeV] 7
—— lowest/central jet — — highest/central jet
However, the various VBF cuts make the signal theoretically less clean:
— dependence on many cuts and variables, impact of HO less cle ar, J
— contamination from the gg — H+jj process not so small...
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G2M4 ~ 9 A2\11/2 A+12M2 /8
Gr oy = L VX (V az)\ Y
OLO 28873 ( a™ ) (1-Mg, /8)2

Similarto e"e~ — HZ for Higgs@LEP2.
& o< 871 sizable only for My < 200 GeV.

At both LHC/Tevatron: o(W=H)~c(ZH).

In fact, simply Drell-Yan production @1-4 LA B R R AR B ARAL RN

of virtual boson with % # M3, :

6(qq —HV)=46(qq — V¥) | e
gz(VF = HV). 12

RC = those of known DY process LI i

(2-loop: gg — HZ in addition). 1102

QCD RC in HV known up to NNLO 1t

(borrowed from Drell-Yan: K~ 1.4) 0.95

EW RC known at O(a): very small 204 10 20 2020 25 20 0

e Radiative corrections to various distributions are also kn own. M Gev]

L e Process fully implemented in various MC programs used by exp eriment:
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Up-to-now, it plays a marginal role at the LHC (not a discover channel..).
Interesting topologies: WH — ~~¢. bb/, 3¢ and ZH — ¢/bb, vvbb.
At high Higgs P one can use jet substructure (  H — bb # g* — qq).
Analyses by ATLAS+CMS: 5 ¢ disc. possible at 14 TeV with £ 2 100 fb.
But clean channel esp. when normalizedto  pp — Z: precision process!

However: WH channel is the

most important at Tevatron:

Mg <130 Gev: H—bb

— (vbb, vibb, ¢t/ bb

(help for HZ — bb//, bbuv)

Mgz 2130 Gev: H— WWF L=
= (F(*jj, 30* |

Sensitivity in the low H mass range: 100 110 120 150 140 150 160 170 ﬁo(éz\cilcz)oo

excludes low Mg < 110 GeV values

~30 excess for My =115-135 GeV at the end of the Tevatronn run!

Tevatron Run Il Preliminary, L <10.0 fo™*

‘H.L.\-\‘E‘g‘t\c‘i\w\H!HHQ‘H\1\‘”%+ILA\S;¢M\SH

—;—Obs d?

Tevatron Exclusion

=
o

n +LEP Exclusion |

95% CL Limit/SM

Frascati, 12-15/05/14 The SM and the Higgs Physics — A. Djouadi — p.41/51



|— Most complicated process for Higgs T

production at hadron colliders: q t
— qq and gg initial states channels >,mm,<
— three-body massive final states. _ _H
— at least 8 particles in final states.. q g t

— small Higgs production rates i I
— very large ttjj+ttbb backgrounds. I
VOO0 —>—

NLO QCD corrections calculated:

1400

small K—factors (% 1—1.2) o(pp — ttH +X) [fb]

strong reduction of scale variation! =L e ]
- - B \\ LO m +

Small corrections to klnematlcal o0 Ho= M+ M2

distributions (e.g:  pr’, P, etc... w [

Small uncertainties from HO, PDFs.

Processes with heavy quarks in BSM:
— Single top+Higgs: pp —tH+X. ; :
— Production with bs:  pp — bbH. e s 1 2 s
e Important for Htt Yukawa coupling! S
e Interesting final states: pp — Htt — v~ + X, vul*(T bbl*.
\_o Possibility for a 5 signalat Mgy S 140 GeV at high luminosities. J

400
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_ 16
AUHC: V=T Tevand Lafow b ] oo v |
50 discovery for My ~130-200 GeV g 2} sit@7Tev —W() _mﬁw ]
9506CL sensitivity for Mg <5600 GeV O | A e ik
gg—H—~vy Mg < 130 GeV) 2 o ' N
gg—~H 77— 40,2020, 2(2b s 4
gg +H—-WW —vlv +0,1 jets 2

£| 200 300 400 500 600
: Higgs mass, m, [GeV/c?]

Even better at 8 TeV and higher
help from VBF/VH and gg—H — 77

8 H oo yy
Tevatron had still some data to analyze g (A S I
=y 02l ATLAS :qHﬂ XV\;\;(WV;(: viv
HV — bb/X@My; <130 Gevl! g SR

Full LHC: same as IHC plus some others
- VBF: qqH — 77,7y, ZZ*, WW*

— VH—>VDbb with jet substructure tech.

— ttH: H— 7 bonus, H — bb hopeless?

Conclusion? Mission accomplie! v
Frascati, 12-15/05/14 The SM and the Higgs Physics — A. Djouadi — p.43/51
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6. Implications of the discovery

f Discovery: a challenge met the 4th of July 2012: a Higgstoric al day. T

%;2000.[' CMS Preleniary & 00 Vewgteed Dats Q.o v —y
E ' — ‘v
(O1800) 1s=7TeV.L=S985" T = f5=7-8 TaV
] weBToV,LaB3R! [ TN g 1
w1600} BN

3
S

]

/
™

y.en_t_s

Weighted E

10"

—_— tewrand L'.T—: Capnchd S s 1o

200 300 400 500
my, [GeV]
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6. Implications of the discovery

And the observed new state looks NI
the long sought SM Higgs boson: W i

6 —
21 DOy = o
11 —0.02750:0.00033 [ :

tie- 0027492000000 ff ¢

a triumph for high-energy physics! 4. Yool owQPoaa fli -
Indeed, constraints from EW data: s 2 : |
H contributes to the W/Z masses ) |
through tiny quantum fluctuations . |

: H : — lOg ‘|— OsoEXC'Md?d' | 160 300
W/Z W/Z m, [GeV]

Fit the EW ( < 0.1%) precision data, g
with all other SM parameters known,
one obtains My = 92+ ¢ GeV, or

Mg <160 GeV at 95% CL

| 182
| 6
4
versus “observed” My =125 GeV. - )
0 0

A very non-trivial check of the SM! "h0 122 124 120 129, 590
The SM is indeed a very successful theory, tested at the permi lle level...
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Rpin: the state decays into 7y
e not spin—1: Landau-Yang
e could be spin-2 like graviton?
— miracle that couplings fit that of H,
— “prima facie” evidence against it:
e.g.. Cg # Cy,Cy > 35¢,

H-Z7 - 6505 : H = 22 - ()0
M, =150Gev | L M, = 280 GeV

CP no: even, odd, or mixture?
(more important; CPV in Higgs!)

ATLAS and CMS CP analyses for 2 s EH R —
g F SM, 0+
pure CP—even vs pure—CP-odd 2 [ fﬂL
/1/ //l/ypo- % - == CMS data
dI (H—ZZ*) dI'(H—ZZ) ® 1000 =
j dM* and dq5 500; ] 'l‘ LR‘L
%:o‘ 550 o ‘%‘1‘0 - 5030
2xIn(L /L)
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f There are however some problems with this (too simple) pictu re: T
— a pure CP odd Higgs does not couple to VV states at tree—level

— coupling should be generated by loops or HOEF: should be sma |
— H CP-even with small CP—odd admixture: high precision meas urement...
—in H—VV only CP—even component projected out in most cases!

Indirect probe: through uvv
guvv = cvg,, wWithcy <1
better probe: [izz=1.1+0.4!

gives upper bound on CP mixture: 3 7
nep =1 — ¢ 2 0.5@68%CL imico S

Direct probe: gy more democratic

—> processes with fermion decays. B
spin-corelationsin  qq — HZ — bbll

or laterin qq/gg — Htt — bbtt.
Extremely challenging even at HL-LHC...
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oX BR rates compatible with ATAS Preimnay | e I e
those expected in the SM L p—— o P
- . H- 1t | _11 =1.15+0.62 =
Fit of all LHC Higgs data = &l —
signal _ e I o T oeon S SIS
strength —observ./SM rate: vy o
agreement at 20-30% level! "% wmomrsoz|  TEET
ATL A i . H - ww L
,utot =1.301+0.30 ot 13203 W=0.68+0.20 —
lLLt-COl;/IS — 0'87 :l: 0'23 fmwlrhwrwr‘ | | ! | HHuZ:ZO.92¢0.28 i
. 1 0 1 005 ‘11‘52‘25
Comblned . Utot ~ 11 Signal strength () Best fit o/ay,,
Higgs couplings to elementary particles as predicted by Hig gs mechanism:
e couplings to WW,ZZ, -~y roughly as expected for a CP-even Higgs,
e couplings proportionial to masses as expected for the Higgs boson
So, it is not only a “new particle”, the “126 GeV boson”, a “new state”...

IT IS AHIGGS BOSON!
Butis it THE SM Higgs boson or A Higgs boson from some extension?

uor the moment, it looks SM-like... Standardissimo (theory of everythingm
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Particle spectrum looks complete: no room for 4th fermion ge neration!
Indeed, an extra doublet of quarks and leptons (with heavy ") would:

—increase o(gg — H) by factor ~ 9 g " o
— H—>gg suppresses BR(bb,VV) by =2 g::b _____ Q=tt.b

— strongly suppresses BR(H — ~7) m y

NLO O(Ggms, ) effects very important: y
2 17 ous (e ] ' T
CH o aTvioeam | Expoctod 957 [ o(H)xBRlsma/sm
[ i
= 1
E [M, 4
® ‘Vbb@Tevatron "**tre.,
%107} ' ]
(0))
W@LHC//
- 0.1F -
102F E I - i
100300500 400 500 F Mu =125 Gev ]
SM4 Higgs boson mass (GeV) mhy =M | 50 GeV =600 GeV
100 200 300 400 500 600
) .. m, = my |GeV
(Direct seach also constraining..) v (GeV]
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6. Implications of the discovery

f. For theory to preserve unitarity: V \V y _‘
we need Higgs with Mg <700 GeV... W ?&ﬁi
We have a Higgs and it is light:  OK! v v
e Extrapolable up to highest scales.
\ = 2M? /V evolves with energy

— too high: non perturbativity

— tog low: stabilit13\//I of tq& EW vaccum2 180
)\(Q ) - 2 + —4m? Q
vy 21+ 3 e 108z

> @Mpl - MH >129 GeV!
at 2loops for mP°'° =173 Gev.....
—> Degrassi et al., Bezrukov et al. 3
but what is measured my at TEV/LHC
mP*'*?mMC? not clear; much better:

. H N A2

m; =171+3GeV from o(pp — tt) 108
ESUG needs further studies/checks... 66 e 1945 125M 1285V 126 126.5 ﬂ
Alekhin.... u [GeV]
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Thus we have a theory for the strong+electroweak forces, the SM, that is:

e a relativistic quantum field theory based on a gauge symmetry :
e renormalisable, unitary and perturbative up to the Plankc s cale,
e leads to a (meta)stable electroweak vaccum up to high scales :
e compatible with (almost) all precision data available to da te...

Is it the theory of eveything and should we be satisfied with it ? No:
The SM can only be a low energy manifestation of a more fundame ntal theory!

Indeed, the SM has the following problems which need to be cur ed:

e “Esthetical”’ problems with multiple and arbitrary paramet ers.
e “Experimental” problems as it does not explain all seen phen omena.
e "A theory consistency” problem: the hierarchy/naturalnes S problem.

There must be beyond the Standard Model physics!

o |
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