Event Reconstruction in Drift Chamber of the CMD-3

Anastasia Karavdina Budker Institute of Nuclear Physics Novosibirsk, Russia

> Young Researchers Workshop "Physics Challenges in the LHC Era" Frascati, Italy 14 May 2009

VEPP-2000

- · circumference 24.38 m
- revolution time 82 nsec
- beam current 0.2 A

- beam length 3.3 cm
 energy spread 6.4×10⁻⁴
- $\beta_x = \beta_z = 4 \div 10 \text{ cm}$ L = 10³² cm⁻²s⁻¹ at 2E=2.0 GeV
- L = 10³¹ cm⁻²s⁻¹ at 2E=1.0 GeV

Physics program

- •Study of hadronic cross-sections $e^+e^-\rightarrow 2h$, 3h, 4h, ... $h = \pi$, K, η ...
- •Precision measurements of $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$
- •Study of light vector meson radial excitations: ρ' , ρ'' , ω' , ϕ' ...
- •Comparison of energy dependence of $e^+e^- \rightarrow hadrons$ (I=1) with spectral functions in τ decays to test CVC
- •Measurements of nucleon electromagnetic form factors and search for $N \overline{N}$ resonances
- •Measurements of $e^+e^- \rightarrow hadrons$ with ISR

CMD-3

- 1. Vacuum Chamber
- 2. Solenoids of VEPP-2000
- 3. BGO Calorimeter
- 4. Drift Chamber

- 5. Csl Calorimeter
- 6. Time-of-Flight System
- 7. LXe Calorimeter
- 8. Z-Chamber
- 9. SC solenoid

• 1218 hexagonal cells (side 9 mm)

- signal wire diameter 15 µm (gold plated W-Re)
- tension 35 g (wire stretch 1.08 mm)
- tension loss due to end cap deflection ±1.8 %
- field wire diameter 100 µm (gold plated Ti)
- tension 120 g (wire stretch 0.6 mm)
- tension loss due to end cap deflection ±20 %
- gas mixture Ar isobutan (80/20)

Chamber body – carbon fibers:

E ~2000 kg/mm², ρ~1.6 g/cm³ End plates are covered by 30 μm copper foil

Inner surface of the outer shell is covered by 250 µm of PET and copper plated G10 (discharge voltage 100 kV/mm)

Inner shell is wrapped up with 30 µm copper foil

Material budget

Construction unit	Thickness,	Matter, X ₀
	cm	
Vacuum chamber (Be)	0.077	2.1*10 -3
Inner shell (carbon fibers)	0.02	0.7*10 ⁻³
Outer shell (carbon fibers)	0.2	1*10-2
End caps (carbon fibers)	0.7	0.04
Gas mixture	30	2.6*10 ⁻³
$(Ar:isoC_4H_{10}(80:20))$		7.5*10-4
Wires		
Whole chamber		0.015

Track Parameters

In a uniform magnetic field helix describes trajectory of a charged particle :

k — curvature;

 $\phi, \theta - \text{angles};$

 Z_0 — z-coordinate at point of closest approach of projected circle to the origin of coordinates;

 ρ — impact parameter (distance from track projection on (x,y) to origin of coordinates)

Track Reconstruction

Reconstruction Chain

Track Reconstruction

Experiments with cosmic rays without magnetic field

Speed of track reconstruction is 550 Hz

Offline Calibration

Isochrone

Initial estimate $t(r,\phi)$ from Garfield is corrected:

$$\delta t(r, \varphi) = t(r, \varphi)_{track} - t(r, \varphi)_{drift}$$

Z-coordinate

Residuals between measured z-coordinate and z-coordinate of track are minimized. Parameters of calibration are length of wire, pedestals, gain and input impedances

Vertex reconstruction

• Test on simulation $e^+e^- \rightarrow 2\pi^+ 2\pi^ \sqrt{s=1.5}$ GeV

Results

- Programs for event reconstruction in drift chamber of the CMD-3 detector were developed.
- Offline calibration of isochrones and z-coordinate are implemented
- Programs for track reconstruction were used in runs with cosmic particles without magnetic field (with different voltages, thresholds, electronics modifications)
- Obtained resolution :

100 µm (minimum) in (x,y) plane

1.6 mm along wires

Plan

- Analysis of event reconstruction efficiency with MC
- To implement Kalman filter for reconstruction of low momentum particle tracks

Thank you for your attention!

Cell Efficiency

Track Reconstruction

• Simulation of $e^+e^- \rightarrow \mu^+\mu^-$ (magnetic field B = 1.5 T, $\sqrt{s}=1$ GeV)

Efficiency of track finding

Efficiency of track reconstruction is 99.97 %

