Astroparticle physics with the ARGO-YBJ experiment

Roberto luppa

May 14-th, 2009

XIV LNF Spring School "Bruno Touschek"

The ARGO-YBJ experiment

Collaboration between:

- Istituto Nazionale di Fisica Nucleare (INFN) Italy
- > Chinese Academy of Science (CAS)

Site: YangBaJing Cosmic Ray Laboratory (Tibet, P.R. of China), 4300 m a.s.l.

Site Coordinates: longitude 90°31' 50" E, latitude 30°06' 38" N

Physics Goals

 $> \gamma$ -ray Astronomy: search for Galactic and extragalactic point sources with a large field of view ($\sim 2 \text{ sr}$) and a duty cycle ~100%, at an energy threshold of a few hundreds of GeV \succ Diffuse γ -Rays from the Galactic plane and SuperNova Remnants > Gamma Ray Burst (GRB) physics in the full GeV – TeV energy range Cosmic Ray physics: • spectrum and composition up to $\approx 10^3 \text{ TeV}$ • anti-p / p ratio at energy \approx TeV Sun and Heliosphere physics with an energy threshold $\approx 10 \text{ GeV}$

through the observation of *Extensive Air Showers (EASs)* produced in the atmosphere by γ -rays and primary nuclei

Single layer of Resistive Plate Chambers (RPCs) with a full coverage (92% active surface) of a large area (5600 m²) + sampling guard ring (6700 m² in total)

\Rightarrow detection of small showers (low energy threshold)

Crab energy spectrum

N _{PAD}	Events /day	E _{med} (TeV)
40 – 100	128 ± 24	0.85
100 – 300	17.9 ± 6.3	1.8
> 300	9.2 ± 2.3	5.2

 $dN/dE = 3.73 \pm 0.80 \ 10^{-11}$ $E^{-2.67 \pm 0.25}$ ev cm $^{-2}$ s $^{-1}$ TeV $^{-1}$

All data: 2006 - 2008

The 3-dimensional surface is the convolution of the Point Spread Function of the detector and the widespread Moon disc.

Data analysis: general features

Data acquisition time:	13/12/2007 — 31/12/2008
Trigger multiplicity threshold	20 <u>~1 particle per 300 m² ~</u>
Trigger rate	~4 kHz <u>1.3X10¹¹ events analyzed</u>
Observation time (θ <50 $^{\circ}$) :	1350 hrs
Source visibility time ($\theta < 50^{\circ}$):	1500 hrs
On-source duty-cycle:	<u>90%</u>
Reached significance (N>60):	<u>32 s.d.</u>
	$S \approx 0.88 \sqrt{t[hrs]}$

Moon Shadow analysis

Data analysis: the method to estimate the antiproton flux

Concerning the east-west displacement the agreement between the MC simulations and the data is very good. It points but the good choice of cthe composition (p=72%, rest 28% rescaled from WScompilation) and the *high reliability of the TIGRF magnetic model.*

They can be used to obtain a simulation of the antiproton contribution.

Data analysis: the *likelihood* method for the estimate of the upper limit 1/2

A fraction r of the simulated events is assumed to be antiprotons. In such a way, the number of events hampered by the Moon in a certain time remains unchanged.

Data analysis: the *likelihood* method for the estimate of the upper limit 2/2

The r-value which maximizes the *likelihood* is:

 $r_{\rm min} = -0.065 \pm 0.078$

This value is compatible with 0. The corresponding upper limit according to the Feldman & Cousins approach is:

 $r_{up} = 0.074$ 90% c.l. $r_{up} = 0.029$ 68% c.l.

Ratio upper limits

For 30<N<60, the proton contribution is 72%, with median energy 1.4 (+0.8, -0.7) TeV. Since the anti-shadow was assumed to be the mirror image of the proton-shadow, we assume for the antiprotons the same median energy.

$$\frac{\Phi(\overline{p})}{\Phi(p)} = \frac{1}{0.72} \frac{\Phi(\overline{p})}{\Phi(matter)} < 0.105$$

As a consequence we quote the ratios:

Following the same procedure for higher multiplicities:

 $\frac{\Phi(\overline{p})}{\Phi(p)} < 11\%$ at $3.3^{+1.3}_{-1.1}$ TeV 90% *c.l.*

Conclusions

- The data collected by the ARGO-YBJ experiment throughout 2008 have been analyzed (1.3X10¹¹ events).
 - The measured angular resolution is in good agreement with MC.
 - The systematic sighting inaccuracy is much less than the angular resolution.
 - The size-energy relation has been well calibrated.
 - Many results on gamma-ray astrophysics.

The upper limits for the antiproton/proton ratio have been estimated as:

$\frac{\Phi(\overline{p})}{\Phi(p)} < 10\%$	at $1.4^{+0.8}_{-0.7}$ TeV	90% c.l.	49	68.3% <i>c.l</i> .
$\frac{\Phi(\overline{p})}{\Phi(p)} < 11\%$	at $3.3^{+1.3}_{-1.1}$ TeV	90% c.l.	5%	68.3% <i>c.l</i> .

End of slideshow.

Roberto Isan 2009 - Roberto Isana XIV (NESoring School -