

Investigations of the branching ratio and CP violation of $B \rightarrow \pi^0 \pi^0$

T'Mir Julius The University of Melbourne Supervisor: Assoc/Prof Martin Sevior

 $\rightarrow \pi^+\pi^-$ Is a time-dependant CP violating process. Vud V_{ub} \overline{d} The time dependant branching fraction for $B \rightarrow f$ is given by $\Gamma(B^0(t) \to f) =$ $e^{-\Gamma|t|}[(|A_f|^2 + |\bar{A}_f|^2) - (|A_f|^2 - |\bar{A}_f|^2)cos(\Delta mt)]$ $+2|A_f|^2 Im(\lambda_f)sin(\Delta mt)]$ λ_{f} is the mixing parameter (p/q) (\overline{A}_{f}/A_{f}) = e^{-2i\Phi_{M}(\overline{A}_{f}/A_{f})}

$$\lambda_{+-} = \left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right) \left(\frac{V_{ub}^* V_{ud}}{V_{ub} V_{ud}^*}\right)$$

The CKM Matrix

- The mass and weak eigenstates of a quark are not the same.
- The CKM Matrix describes the mixing between each quark.
- The Wolfenstein parameterisation leads to the Unitary Triangle.

The Asymmetry

Flavour tagging allows us to find the time dependent asymmetry in $B \rightarrow \pi + \pi$ -.

$$a_f = \frac{\Gamma[B^0(t) \to f] - \Gamma[\bar{B^0}(t) \to f]}{\Gamma[B^0(t) \to f] + \Gamma[\bar{B^0}(t) \to f]}$$

$$a_f = \frac{1}{1 + |\lambda_f|^2} [(1 - |\lambda_f|^2) \cos(\Delta mt) - 2 (m\lambda_f) \sin(\Delta mt)]$$

• In the absence of penguin diagrams $Im\lambda_{+-}$ is equal to $sin(2\phi_2)$.

In the presence of penguin processes, the asymmetry becomes $sin(2\varphi_2 + \kappa)$, or $sin(2\varphi_2 eff)$

Coupling

• Expressing $\varphi(\pi\pi)$ states in the form **|I, I₃>** are of the form:

$$\begin{split} \phi(\pi^0 \pi^0) &= \mid 1, 0 \rangle \mid 1, 0 \rangle = \sqrt{\frac{2}{3}} \mid 2, 0 \rangle - \sqrt{\frac{1}{3}} \mid 0, 0 \rangle \\ \phi(\pi^0 \pi^+) &= \mid 1, 0 \rangle \mid 1, +1 \rangle = \mid 2, +1 \rangle \\ \phi(\pi^+ \pi^-) &= \mid 1, -1 \rangle \mid 1, +1 \rangle = \sqrt{\frac{1}{3}} \mid 2, 0 \rangle + \sqrt{\frac{2}{3}} \mid 0, 0 \rangle \end{split}$$

• $\mathbf{B} \to \pi \pi$ proceeds through the process $\overline{\mathbf{b}} \to \overline{\mathbf{u}} \mathbf{u} \overline{\mathbf{d}}$: $\phi(\overline{b} \to \overline{u}u\overline{d}) = A_{\frac{3}{2}} | \frac{3}{2}, +\frac{1}{2} \rangle + A_{\frac{1}{2}} | \frac{1}{2}, +\frac{1}{2} \rangle$

Coupling Continued

$$\begin{aligned} \phi(B^0) &= \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \\ \phi(\bar{b} \to \bar{u}u\bar{d})\phi(B^0) &= (A_{\frac{3}{2}} \mid \frac{3}{2}, +\frac{1}{2} \rangle + A_{\frac{1}{2}} \mid \frac{1}{2}, +\frac{1}{2} \rangle)(\left| \frac{1}{2}, -\frac{1}{2} \rangle) \\ &= \sqrt{\frac{1}{2}}A_{\frac{3}{2}} \mid 2, 0 \rangle + \sqrt{\frac{1}{2}}(A_{\frac{1}{2}} + A_{\frac{3}{2}}) \mid 1, 0 \rangle + \sqrt{\frac{1}{2}} \mid 0, 0 \rangle \end{aligned}$$

• The branching fraction of $B^0 \rightarrow \pi^0 \pi^0$ is thus:

Branching Fractions

Continuing in this fashion

$$Br(B^{0} \to \pi^{+}\pi^{-}) = A^{+-} = \sqrt{\frac{1}{6}A_{\frac{3}{2}}} - \sqrt{\frac{1}{3}A_{\frac{1}{2}}}$$
$$Br(B^{0} \to \pi^{0}\pi^{+}) = A^{0+} = \sqrt{\frac{3}{4}A_{\frac{3}{2}}}$$
$$Br(B^{0} \to \pi^{0}\pi^{0}) = A^{+-} = \sqrt{\frac{1}{3}A_{\frac{3}{2}}} + \sqrt{\frac{1}{6}A_{\frac{1}{2}}}$$

For convenience, let's define $A_2 = \sqrt{(1/12)} A_{3/2}$ and $A_0 = \sqrt{(1/6)} A_{1/2}$ so that:

Penguin in Depth

- The gluonic penguin process can contain only the A₀ modes.
- The tree process can contain both A₂ and A₀ modes.

Breaking it down

For A+- $\lambda_{+-} = e^{-2i\phi M} \frac{\bar{A}_{+-}}{A_{+-}} = e^{-2i\phi M} \frac{\bar{A}_2 - \bar{A}_0}{A_2 - A_0}$ let $z = \frac{A_2}{A_0}$

and recall

$$A_2 e^{-2i\phi T} = \bar{A}_2$$

So that

$$e^{-2i\phi M} \frac{\bar{A}_{+-}}{A_{+-}} = e^{-2i(\phi T + \phi M)} \frac{1 - \bar{z}}{1 - z}$$

with $|A_2|$, $|A_0|$ and hence $\cos\theta$ determinable from geometric considerations

$$= e^{-2i(\phi_2)} \frac{1 - |\bar{z}| e^{\pm i\bar{\theta}}}{1 - |z| e^{\pm i\theta}}$$

Ambiguities

As sinθ cannot be determined from this triangle, we find that there is a fourfold ambiguity in λ_{+-.}

$$\lambda_{00} = e^{-2i(\phi_2)} \frac{1 - \frac{1}{2} |\bar{z}| e^{\pm i\bar{\theta}}}{1 - \frac{1}{2} |z| e^{\pm i\theta}}$$

contains the same ambiguity.

- There are four possible solutions for sin(2φ₂)

$$Im(\lambda_{00}) = sin(2\phi_2) Im(\frac{1 - \frac{1}{2}|\bar{z}|e^{\pm i\theta}}{1 - \frac{1}{2}|z|e^{\pm i\theta}})$$

$$\sin(2\phi_2 + \kappa_{00}) = Im(\lambda_{00}) \left| \frac{1 - \frac{1}{2} |z| e^{\pm i\theta}}{1 - \frac{1}{2} |\bar{z}| e^{\pm i\bar{\theta}}} \right|$$

as κ_{00} has four different values depending upon the phase of $\theta.$

Eliminating Ambiguities

•
$$sin(2\phi_2 + \kappa_{+-}) = Im(\lambda_{+-}) \left| \frac{1 - |z| e^{\pm i\theta}}{1 - |\overline{z}| e^{\pm i\overline{\theta}}} \right|$$

Also has four solutions, but (hopefully) not the same four solutions.

- Overlap between κ_{+-} and κ_{00} leaves a twofold ambiguity in sin(2 ϕ_2)
- These require individual measurements of A_{00} , \overline{A}_{00} , A_{+-} , and \overline{A}_{+-} .

Without Flavour Tagging

- In the case that A_{00} and \overline{A}_{00} can not be determined individually, an upper bound can still be placed on the penguin contributions to sin($2\phi_2$).
- By finding the amplitude $A_{00} + \overline{A}_{00}$, we can redraw the diagram so as to maximise the effects of θ and $\overline{\theta}$ by setting $A_{00} = \overline{A}_{00}$
- Using this method, it can be shown

$$sin^2(\kappa) \le \frac{A_{00} + \bar{A_{00}}}{A_{0+} + A_{0-}}$$

- To make B-mesons we need a B factory.
- The Belle experiment is located at KEK, in Tsukuba, Japan
- It operates at the Y(4S) Resonance.
- SC solenoid 1.5TCsi(Tl) $16X_0$ TOF conter 8 GeV Si vtx. det. 3 lyr. DSSD Aerogel Cherenkov cnt. $n=1.015\sim1.030$ Central Drift Chamber small cell +He/C₂H₆ μ/K_L detection 14/15 lyr. RPC+Fe

Belle Detector

It is an asymmetrical collider.

ECL Timing Data - Conceptual

The branching fraction of is very small

(2.3_{-0.5} -0.3^{+0.4} +0.2)×10⁻⁶ - Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 94, 181803 (2005).

 $(1.47 \pm 0.25 \pm 0.12) \times 10^{-6}$ - B. Aubert et al. (The BABAR Collaboration) , Phys. Rev. D 76, 091102 (2007)

• Due to the decay chain of π^0 , γ identification is of the essence.

Bhabha Events and the ECL

- Bhabha events result in a highly energised particle depositing a huge amount of energy in the ECL.
- The ECL crystals have a finite decay time.
- If the crystal stays 'hot' after a subsequent beam crossing, the reading in the ECL will resemble a signal photon.

Timing Information

- To eliminate off time events, we can record the time at which events were triggered.
- A reading is `on-time' if its TDC count is between 9000 and 11000.
- Outside of this range and the reading is excluded
- TDC of zero is not excluded

Work to Date

- It is not yet feasible to investigate the effects of the removal of off-time QED events using simulated data.
- Over a third of Belle data does not have the timing data attached.
- Over the past year I have been working to reprocess over 200 million BB-bar pairs to attach the timing data.

This reprocessing is underway, and should be completed by July 2009

Compare old and new ECL tables to check for consistency

Create a List of Event Numbers

Reprocess Raw Data

List ECL Event information

for Relevant Events

Insert the new ECL Table in to old event MDST

