May 14, 2009

Study of $B \rightarrow K\eta_c$ and $B \rightarrow K\eta_c(2S)$ decays

Anna Vinokurova Budker INP

KEKB

- 3.5 GeV $e^+ \times$ 8.0 GeV e^-
- √s = 10.58 GeV
- $\mathscr{L}_{max} = 1.9 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- ∫ℒdt > 840 fb⁻¹

BELLE

- Si vertex detector
- drift chamber
- time-of-flight counters
- aerogel Cherenkov counters
- CsI(Tl) calorimeter
- 1.5 T solenoid
- μ and K_{L} identification system

Motivation

- Decays $\eta_c \rightarrow$ hadrons are not very well studied, their branching fractions are known with rather poor accuracy
- $B^{\pm} \rightarrow K^{\pm}$ cc is a copious source of charmonia
- $\eta_c(2S)$ meson is an excited state of η_c similar analysis algorithm
- $\eta_c(2S)$ was seen in one hadronic decay ($\eta_c(2S) \rightarrow K_s K \pi$) only
- A data sample accumulated at Belle allows to improve the existing values of branching products of η_c and $\eta_c(2S)$ decaying to $(K_s K \pi)$
- $c\overline{c} \rightarrow K_s K\pi$ mode can be used to determine masses and widths of η_c and $\eta_c(2S)$ mesons

Decay modes

1. $B^{\pm} \rightarrow K^{\pm} \eta_{c}$, $\eta_{c} \rightarrow K_{s} K \pi$, $K_{s} \rightarrow \pi^{+} \pi^{-}$ 2. $B^{\pm} \rightarrow K^{\pm} \eta_{c}$ (2S), η_{c} (2S) $\rightarrow K_{s} K \pi$, $K_{s} \rightarrow \pi^{+} \pi^{-}$

The data sample of ~535 million BB pairs was used.

Selection criteria

- $|\Delta \mathbf{R}| < 0.2 \text{ cm}, |\Delta \mathbf{Z}| < 2.5 \text{ cm}$
- $P_t > 0.1 \text{ GeV/c}$
- $18^{\circ} < \theta_{track} < 152^{\circ}$
- $PID(K/\pi) > 0.6$ for K mesons
- PID(π/K) > 0.2 for π mesons
- $|\cos \theta_{\mathrm{Th}}| < 0.8$

$$B^{\pm} \rightarrow K^{\pm} \eta_{c}, \eta_{c} \rightarrow K_{s} K \pi, K_{s} \rightarrow \pi^{+} \pi^{-}$$

Events with invariant mass combinations M(KKK), M(KK), M(K π), M(K $_{s}$ K π), M(K $_{s}$ K) consistent with ϕ (1.02 ± 0.01 GeV), D⁰(1.865 ± 0.015 GeV), D[±] (1.869 ± 0.015 GeV), or D $_{s}^{\pm}$ (1.968 ± 0.03 GeV) mesons were excluded from the analysis.

In case of multiple candidates the one with the best K_s mass, vertex coordinate, and η_c mass was chosen. Number of events was obtained from the fit of the ΔE distribution by $f = N_{events} \cdot ((1-\alpha) \cdot Gauss1 +$

 α ·Gauss2) + c₀(1+c₁x+c₂x²) (c₁ is fixed from sideband)

5

Effect of the interference between η_{c} signal and nonresonant contribution on the number of signal events $N_{observed} = K \cdot |A_{signal} + A_{non-res}|^2 =$ $= \mathbf{K} \cdot (|\mathbf{A}_{\text{signal}}|^2 + |\mathbf{A}_{\text{non-res}}|^2 + 2\Re(\mathbf{A}_{\text{signal}}\mathbf{A}_{\text{non-res}}^*))$ Assumption 1: no interference $N_{\text{observed}} = K \cdot (|A_{\text{signal}}|^2 + |A_{\text{non-res}}|^2) \qquad \qquad N_{\text{signal}} = K \cdot |A_{\text{signal}}|^2 = 789 \pm 37$ Assumption 2: destructive interference $N_{\text{observed}} = K \cdot (|A_{\text{signal}}|^2 + |A_{\text{non-res}}|^2 + 2|A_{\text{signal}}| \cdot |A_{\text{non-res}}|) \qquad N_{\text{signal}} = 1345 \pm 44$ Assumption 3: constructive interference $N_{\text{observed}} = K \cdot (|A_{\text{signal}}|^2 + |A_{\text{non-res}}|^2 - 2|A_{\text{signal}}| \cdot |A_{\text{non-res}}|) \qquad N_{\text{signal}} = 662 \pm 31$ Model uncertainty is very large: $N_{signal} = K \cdot |A_{signal}|^2 = 1000 \pm 340$

To decrease this uncertainty the interference needs to be taken into account.

Interference

K

4-particle decay $B^{\pm} \rightarrow K^{\pm}K_{s}K\pi$ has 5 (4×3 – 4 conserv. laws – 3 B decay angles)

independent variables in phase space: Dalitz variables $(q_1 = M(K\pi)^2, q_2 = M(K_s\pi)^2)$,

angles (θ , ϕ), and K_sK π invariant mass.

Due to low statistics we don't use angle ϕ (between planes (K π) and (K_sK)) or Dalitz plot to extract non-resonant contribution.

For our study we use $\cos\theta$ and M(K_sK π) distributions.

Decay $\eta_c(0^-) \rightarrow K_s K \pi$ has uniform dependence on $\cos\theta$.

From the angular distribution of non-resonant term we assume that there are at least S, P, and D-wave contributions.

Fitting function

Distribution of signal and nonresonant term events

Preliminary results

	This work	BaBar	CLEO	Belle
$B(B^{\pm} \to K^{\pm} \eta_{c}) \times B(\eta_{c} \to K_{s} K \pi), \times 10^{-6}$	$20.5 \pm 1.2(stat) + 1.4 - 2.2(syst) \pm 4.4(model)$		21.2±4.7	(PDG)
$M(\eta_c), MeV$	2984.2 \pm 1.2(stat) $^{+0}_{-1.8}$ (syst) \pm 0.2(model)	2982.5±1.1±0.9	2981.8±1.3±1.5	2979.6±2.3±1.6
$\Gamma(\eta_{c})$, MeV	$30.7 \pm 2.3(\text{stat}) {}^{_{+0.4}}_{_{-1.2}}(\text{syst}) \pm 0.4(\text{model})$	34.3±2.3±0.9	24.8±3.4±3.5	29±8±6
$B(B^{\pm} \to K^{\pm} \eta_{c}(2S)) \times B(\eta_{c}(2S) \to K_{s}K\pi), \times 10^{-6}$	$2.2 \pm 0.6(\text{stat}) {}^{_{+0.6}}_{_{-0.1}}(\text{syst}) \pm 0.8(\text{model})$		2.2±1.8	(PDG)
$M(\eta_c(2S)), MeV$	3638.2 \pm 2.3(stat) $^{+1.3}_{-2.4}$ (syst) \pm 0.8(model)	3645.0±5.5±6.4	3642.9±3.1±1.5	3654±6±8
$\Gamma(\eta_c(2S)), MeV$	6.0 ^{+13.3} _{-1.4} (stat) ^{+8.1} _{-0.8} (syst) ± 2.5(model)	17.0±8.3±2.5	6.3±12.4±4.0	< 55

Model error comes from the uncertainty of the interference between signal and non-resonant contribution.

Conclusion

- Large amount of data allows to determine mass and width of the charmonium states η_c and $\eta_c(2S)$ with rather small statistical errors
- The effect of intereference between signal and non-resonant contribution is estimated and included as model uncertainty for the values of branching product $B(B^{\pm} \rightarrow K^{\pm}\eta_{c}) \times B(\eta_{c} \rightarrow K_{s}K\pi), B(B^{\pm} \rightarrow K^{\pm}\eta_{c}(2S)) \times B(\eta_{c}(2S) \rightarrow K_{s}K\pi)$, and also η_{c} and $\eta_{c}(2S)$ mass and width
- Obtained branching products have the best accuracy and their values are consistent with the world average

Plans

- The interference effect will be studied in other hadronic decay modes of η_c , such as (ηK^+K^-) , $(\eta \pi^+\pi^-)$, and $(\pi^0K^+K^-)$
- To study similar decay modes of the excited state $\eta_c(2S)$

Backup

$B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow K_{s} K \pi, K_{s} \rightarrow \pi^{+} \pi^{-}$

Events with invariant mass combinations M(KKK), M(KK), M(K π), M(K $_s$ K π), M(K $_s$ K π) consistent with φ

 $(1.02 \pm 0.01 \text{ GeV})$, D⁰ $(1.865 \pm 0.015 \text{ GeV})$, D[±] $(1.869 \pm 0.015 \text{ GeV})$, or D[±]_s $(1.968 \pm 0.03 \text{ GeV})$

mesons were excluded from the analysis.

In case of multiple candidates the one with the best K_s mass, vertex coordinate, and η_c mass was chosen.

Number of events was obtained from the fit of the ΔE distribution by the sum of the Crystal Ball function and the background function $f = N_{events} \cdot ((1-\alpha) \cdot Gauss1 + \alpha \cdot Gauss2) + c_0(1+c_1x+c_2x^2) (c_1 \text{ is fixed from sideband})$

Signal region: $|\Delta E| < 0.03$

Fitting function (2)

13 parameters:

- Ν, α, β, γ
- interf. between A_{η} and $A_{S,P,D}$ (6): $\int \Re(A_{\eta}A_{S,P,D}^*)dq_1^2dq_2^2d\phi$, $\int \Im(A_{\eta}A_{S,P,D}^*)dq_1^2dq_2^2d\phi$
- interf. between A_s , A_p , and $A_D(3)$: $\int \Re(A_s A_{P,D}^*) dq_1^2 dq_2^2 d\phi$, $\int \Re(A_p A_D^*) dq_1^2 dq_2^2 d\phi$

$$F = \frac{1 + \varepsilon_{1} x + \varepsilon_{2} x^{2}}{(s - M^{2})^{2} + (M \Gamma)^{2}} \sum_{i=0}^{2} \sum_{j=0}^{4} C_{ij} s^{i} x^{j} \implies 15 C_{ij}$$
$$C_{03} = \delta_{1}C_{13}, \quad C_{13} = \delta_{2}C_{23}$$
$$linearly$$
$$C_{04} = \delta_{1}C_{14}, \quad C_{14} = \delta_{2}C_{24}$$
dependent

From the fit we can obtain only

- 15–4=11 independent parameters
- 2 parameters ($\alpha \& \int \Im(A_{\eta}A_{s}^{*})dq_{1}^{2}dq_{2}^{2}d\phi$)

cannot be determined, so we scan over them.

For α the correct interval is determined by good χ^2 .

Systematic errors

	$\eta_{_{ m c}}$ 1	$\eta_c(2S)$
Sources of systematic uncertainties	%	%
Number of BB pairs	1.3	1.3
$B(K \rightarrow \pi^+\pi^-)$	0.1	0.1
Efficiency	1,1	1.5
Bin size	(+4.8) (-9.6)	+27.5
Background approximation	_	+0.07
Track reconstruction	3	3
K^{\pm} identification	1.6	1.6
π^{\pm} identification	1.5	1.5
K _s reconstruction	2.8	2.8
Total	(+6.9) (-10.8)	(+28.0) (-5.1)

	η_{c}	$\eta_{c}(2S)$
Sources of systematic uncertainties	Mass, MeV	Mass, MeV
Background approximation	_	_
Bin size	-0.8	-2.0
Scale uncertainty	-1.6	1.3
Detector resolution	_	_
Total	(+0) (-1.8)	(+1.3) (-2.4)
	η_{c}	$\eta_{c}(2S)$
ources of systematic uncertainties	Width, MeV	Width, MeV

Sources of systematic uncertainties	Width, MeV	Width, MeV	
Background approximation	-0.1	+0.1	
Bin size	(+0.1) (-1.1)	+8.1	
Scale uncertainty	Ι	_	
Detector resolution	0.4	0.8	
Total	(+0.4) (-1.2)	(+8.1) (-0.8)	

Interference between signal and peaking background

• Assumption 1: No interference

Breit-Wigner
$$f = \left| \frac{1}{x^2 - M^2 + i M \Gamma} \right|^2 \otimes Gauss + bg$$

• Assumption 2: 100% interference

Breit-Wigner and additional non-resonant background with phase ϕ

$$f = \left| \frac{1}{x^2 - M^2 + i M \Gamma} + \alpha e^{-i\phi} \right|^2 \otimes Gauss + bg1$$

We fit $M(\eta_c)$ sideband region by $f = \alpha^2 + bg1$ (bg1 is fixed from ΔE sideband, ϕ is a floating parameter) \Rightarrow obtain α

Results

Decay mode	ε, %	Number of events	Sign	Branching product ×10 ⁻⁶	PDG ×10 ⁻⁶
$B^{\pm \to} K^{\pm} \eta_{c}, \eta_{c} \to \eta \pi^{+} \pi^{-}$	13.34 ± 0.12	476 ± 95	5.0	$16.9 \pm 3.4 {}^{+0.7}_{-1.2}$	29.7 ± 11.5
$B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow \eta \pi^{+} \pi^{-}$	13.72 ± 0.13	108 ± 73	1.5	< 7.4	
$B^{\pm \rightarrow}K^{\pm}\eta_{c}, \eta_{c} \rightarrow \eta K^{+}K^{-}$	10.31 ± 0.11	133 ± 42	3.2	$6.1 \pm 1.9 \pm 0.3$	< 14.1
$B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow \eta K^{+} K^{-}$	10.84 ± 0.12	19 ± 26	0.7	< 2.6	_
$B^{\pm} \rightarrow K^{\pm} \eta_{c}, \eta_{c} \rightarrow \pi^{0} K^{+} K^{-}$	11.51 ± 0.11	510 ± 72	7.1	$8.4 \pm 1.2 \pm 0.4$	10.6 ± 2.4
$ B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow \pi^{0} K^{+} K^{-} $	11.68 ± 0.11	80 ± 51	1.6	< 2.5	_
$B^{\pm} \rightarrow K^{\pm} \eta_{c}, \eta_{c} \rightarrow K_{s} K \pi$	13.63 ± 0.20	856 ± 39	21.9	$17.0 \pm 0.8^{+0.9}$	21.2 ± 4.7
$B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow K_{s} K \pi$	14.30 ± 0.21	119 ± 33	3.6	$2.2 \pm 0.6 \pm 0.1$	

Assumption: no interference between signal and peaking background

Results (cont.)

1. a)
$$B(\eta_c \to \eta \pi^+ \pi^-) / B(\eta_c \to K_s K \pi) = 0.99 \pm 0.20^{+0.04}$$

From PDG: 1.40 ± 0.57
b) $B(\eta_c(2S) \to \eta \pi^+ \pi^-) / B(\eta_c(2S) \to K_s K \pi) < 4.8$

2. a)
$$B(\eta_c \to \eta K^+ K^-) / B(\eta_c \to K_s K \pi) = 0.36 \pm 0.11 \pm 0.02$$

b) $B(\eta_c(2S) \to \eta K^+ K^-) / B(\eta_c(2S) \to K_s K \pi) < 1.7$

3. a)
$$B(\eta_c \rightarrow \pi^0 K^+ K^-) / B(\eta_c \rightarrow K_s K \pi) = 0.49 \pm 0.07 \pm 0.02$$

From isotopic symmetry: 0.5 (consistency check!)
b) $B(\eta_c(2S) \rightarrow \pi^0 K^+ K^-) / B(\eta_c(2S) \rightarrow K_s K \pi) < 1.6$

 $B^{\pm} \rightarrow K^{\pm}\eta_{c}, \eta_{c} \rightarrow K_{s}K\pi, K_{s} \rightarrow \pi^{+}\pi^{-}$

 $(K\pi)^4$