Measurement of $Z \rightarrow \mu\mu$ cross section in LHC

Roberto Di Nardo University & INFN "Tor Vergata"

Overview

The "re-discovery" of the Standard Model with the analysis of W and Z production crucial for ATLAS and others LHC experiments:

- 1. Alignment of tracking detector (i.e. the ATLAS Muon Spectrometer) and calibration
- 2. Monte Carlo tuning and detector understanding
- 3. Setting new PDF constraints

The ATLAS Experiment

Z production Cross Section

In this talk I will discuss the measurement of $Z{\rightarrow}\mu\mu$ cross - section with the first data with the ATLAS detector

action cross section enpected at mile (
	√s [TeV]	σ·BR			
Ζ→μμ	14	2.02 nb			
	10	1.35 nb			

Systematic contributions from experimental and theoretical sources need to be carefully taken in to account

$$\frac{\delta\sigma}{\sigma} = \frac{\delta N \oplus \delta B}{N - B} \oplus \frac{\delta\varepsilon}{\varepsilon} \oplus \frac{\delta A}{A} \oplus \frac{\delta L}{L}$$

Event Gallery

Event Gallery

Luminosity measurement

> Fundamental to pass from the rate of a process and it's relative cross section

> It's possible to estimate it taking into account the beam parameters:

Bunch cross frequency f

Number of colliding protons per bunch crossing N

 \succ Transversal beam size $\sigma_x \sigma_y$

$$L = f \frac{N^2}{4\pi\sigma_x \sigma_y}$$

x 72

 \blacktriangleright Beam size \rightarrow biggest source of uncertainty

 \blacktriangleright Low luminosity phase \rightarrow beam parameters will be used to measure the absolute luminosity

≻ precision of about 20%

Second phase \rightarrow elastic pp collisions will be observed by Roman Pot detectors

more precise (<3%) measurement</p>

Relative luminosity will be measured by luminosity monitors (inelastic pp collisions)

Absolute measurement inferred from the relative one by means of calibration

➢ Well known processes (e.g.W/Z production itself) can also be used for luminosity measurement

> Aim is to reach an accuracy of less than 5% during physics runs

Z Event Selection

Cales -

Roberto Di Nardo – University & INFN Tor Vergata

Z Event Selection

➢ Cut flow for signal and background (x10⁴) for an integrated luminosity of 50pb^{−1}

Selection	Ζ→μμ	$bar{b}{ o}\mu\mu X$	₩→μν	Ζ→ττ	tī
Trigger	3.76±0.01	10.08±0.04	36.7±0.1	0.09±0.01	0.69±0.01
2μ + Opp. charge	3.33±0.01	3.00±0.04	1.14±0.02	0.04±0.01	0.35±0.01
$M_{\mu\mu}$ cut	3.04±0.01	0.26±0.01	0.04±0.01	(14±4)×10 ⁻⁴	0.02±0.01
Pt cut	2.76±0.01	0.125±0.001	0.004±0.001	(11±4)×10 ⁻⁴	(134±8)×10 ⁻⁴
Isolation	2.57±0.02	(18±5)×10 ⁻⁴	(9±5)×10 ⁻⁴	(11±4)×10 ⁻⁴	$(66\pm 4) \times 10^{-4}$

- Dominant background from tt events
 - Jet background expected to be smaller , but it's theoretically not well known
 - \rightarrow biggest uncertainty

Acceptance

Work in Progress

- Calculated through MC simulation (MC@NLO) imposing kinematical cuts (p_T and η) on outgoing muons from Z
- In the first stage of data taking the uncertainties on luminosity and acceptance will dominate the Z cross section measurement
- Systematic error in acceptance calculation depends on:
 - the different PDF error sets that can be used
 - the Initial State Radiation
 - Intrinsic pT of incoming partons
 - QED corrections (computed with Photos tool)
 - Spin correlation between incoming partons and final leptons

Default settings for acceptance calculation: ISR on, Photos on, Intrinsic $p_T=0$ GeV, spin corr. on

Z→µµ Acceptance 42.62 %

Systematic error is of the order of 2%

Reconstruction & trigger efficiency

TAG & PROBE Method

- Uses the independent muon measurement given by Inner Detector and Muon Spectrometer
- Requires two reconstructed track in ID and at least 1 in Muon Spectrometer. Invariant mass of two ID tracks close to Z mass. ID tracks isolated
- ➤ ID track + associated MS track
 →tag muon
- The second track in the ID correspond to a probe muon

 \rightarrow same role of the generated muon in the determination of efficiency with simulated data

Momentum scale and resolution

The muon momentum measurement will be affected by:

- Iimited knowledge of the magnetic field
- uncertainty in the energy loss of the muons

pT scale and resolution

 \succ alignment of the muon spectrometer

ENERGY LOSS

Muons with pT<100 GeV lose on average \sim 3 GeV on their passage through the calorimeters almost independently of their energy.

>5% uncertainty in material traversed correspond to a ±150 MeV uncertainty in energy loss.

>Using $Z \rightarrow \mu\mu$ events, one computes the tower-dependent corrections which minimize:

$$\frac{p_{corr,+,k} + p_{corr,-,k}}{\sigma_k^2} - M_Z^2 \Big]^2$$

MS MISALIGNMENT

Accounted by computing scale factors to correct the observed Z shape.

> pT scale \rightarrow impact on measured mean value

> pT resolution \rightarrow impact on Z width

Iterative procedure changes the MC pT resolution function in width and scale

Recalculate the Z mass distribution

Procedure stops if the new MC distribution agree with the measured distribution

Conclusions

Expected results for the $\sigma_Z \cdot BR(Z \rightarrow \mu \mu)$ measurement 50pb⁻¹ @ 14TeV

Process	N(x10 ⁴)	B (x10 ⁴)	Axε	δA/A	δε/ε	σ(pb)
Ζ→μμ	2.57±0.02	0.010±0.002	0.254	0.023	0.03	2016±16± 76

The first collisions at $\sqrt{s} = 10$ TeV are hopefully coming soon:

First collisions expected in late 2009. The plan is to run continuously for almost an year without the winter shutdown. The goal is to integrate 100-300 pb^{-1} .

>With the first few tens of pb⁻¹ it will be possible get the first SM physics measurements, that represents the background for the new physics signals at LHC.

The $Z \rightarrow \mu\mu$ mass and cross-section measurements will be used first to understand the detector: align and calibrate the muon spectrometer and to measure the muon reconstruction and trigger efficiency.

A lot of work ongoing today to study the physics measurement at 10 TeV

