## MissingET in the ATLAS detector



Dr Giovanni Siragusa

#### The XIV LNF Spring School "Bruno Touschek" in Nuclear, Subnuclear and Astroparticle Physics

GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung





#### Physics motivation

- A very good measurement of the Missing Transverse Energy  $(E_{\tau}^{\ miss})$  is essential for many physics studies
  - Events with large E<sub>T</sub><sup>miss</sup> are expected to be key signatures for new physics (SUSY, Extra Dimensions)
  - A good measurement in terms of linearity and resolution is also important for reconstruction of the top-quark mass from ttbar events with one of the top-quark decaying semi-leptonically
  - Crucial for the efficient and accurate reconstruction of the Higgs boson mass, when decaying to a pair of τ-leptons
  - SM studies also require a good knowledge of the  $E_{T}^{miss}$  (e.g. W boson cross section and mass measurement)

#### The Large Hadron Collider

CMS

#### Design parameters

- $\sqrt{s}=14 \text{ TeV}$
- $\mathcal{L} = 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- 40 MHz bunch-crossing rate
- Initial operation
- √s=10 TeV
- $\mathcal{L} = 10^{31} 10^{32} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
- 13-40 MHz bunch-crossing rate

ALICE

#### Pile-up

ATLAS

- ~23 interactions at design  $\mathscr{L}$ Underlying event
- expected a factor ~2.5 higher than the activity measured at Tevatron

AHCb

## The ATLAS detector

#### General purpose detector

#### Inner Detector ( $|\eta| < 2.5$ )

- Homogeneous solenoidal field (2T)
- High resolution/granularity, particle ID Calorimeter ( $|\eta| < 4.9$ )
- Electron/photon
  - $\sigma(E)/E = 10\%/\sqrt{E(GeV)} + 0.7\%$
  - linearity better than 0.5%
- Jets
  - $\ \ \sigma(E)/E = 50\%/\sqrt{E} + 3\% \quad (|\eta|{<}3)$
  - $\sigma(E)/E = 100\%/\sqrt{E} + 10\% (|\eta|>3)$
- Muon Spectrometer ( $|\eta| < 2.7$ )
- Air core toroidal field
- 10% resolution for muons  $p_{T}$  of 1 TeV
  - Less than 5% up to 100 GeV



#### The Missing Transverse Energy

 $E_{x,y}^{miss} = -\sum E_{x,y}$  (where the sum is done over all the energy deposits in the event)

- At hadronic colliders it is not possible to use the Centre of Mass Energy to constrain the kinematic of the event
  - The conservation of the transverse momentum (orthogonal to the beam direction) can be used to measure the transverse momentum of non interacting particles
- Such a measurement requires the knowledge of the entire event and of the calibrations
  - Need to understand the calibration with high accuracy for high  $p_T$  objects and for the "soft" part of the event (mainly pions)
  - Affected by underlying event/pile-up and limited detector coverage

# The algorithm for $E_T^{miss}$ reconstruction in ATLAS

- The reconstruction of the  $E_{\!\scriptscriptstyle T}^{\rm\scriptscriptstyle miss}$  is mainly based on the Calorimeter measurement
- · Corrections are applied for muons and energy lost in dead materials

#### Cell-based calculation

- Collect the energy deposits in cells that survive a noise cut
- Calibrate cells accordingly to their energy density or cluster shape
- Add the muon  $p_{T}$  (from MS)
- Correct for energy loss in dead regions of the detector
- Refine calibration according to reconstructed objects

#### Object based calculation

- Classification of high- and low- $p_{\tau}$
- Identify e,  $\gamma$ ,  $\mu$ ,  $\tau$  (high-p<sub>T</sub>)
- Identify jets (without the clusters previously assigned to high-p<sub>τ</sub>)
- Remaining cluster classified as low-p<sub>T</sub> deposits
  - $\pi^{\pm}$ ,  $\pi^{0}$ , soft jets
- High- and low- $p_{\tau}$  objects are calibrated

Better against low energy deposits

## Effect of the "soft" part of the event

- All Cells surviving the noise cuts, even if not associated with any high- $p_T$ reconstructed object, are used in the  $E_T^{miss}$  calculation (calibrated using the global calibration schema)
  - Recover bias of ~1 GeV
  - Resolution improved by a factor ~1.25



### Calorimeter noise suppression

The electronic noise alone in ~200k readout channels of the calorimeter contributes about 13GeV to the width of the E<sub>T</sub><sup>miss</sup>

Standard noise suppression

 $- E_{cell} > n \cdot \sigma_{noise}$ 

- Topological clustering: collect neighbouring cells until the cell energy falls below a threshold (4/2/0)
  - Cells with very low signal can survive based on the signal in neighbouring cells



G. Siragusa - LNF Spring School, 11-15 May 2009

#### Data-Simulation comparison

- The expected  $E_T^{miss}$  distribution obtained by a randomisation of the cell energy with a Gaussian noise of width  $\sigma_{noise}$ , superimposed on the measured cell-based ETmiss distribution
  - A good description of the observed distribution is seen



G. Siragusa - LNF Spring School, 11-15 May 2009

## Global and refined calibration

- The Cell-based calculation applies calibration in two steps
- Global calibration
  - Based on the energy density
  - Based on the signal shape
- Refined calibration
  - For each physics object

At the EM scale the  $E_T^{miss}$  linearity has a 30% bias, which is reduced to 5% using the global calibration

The level of hadronic activity in the event is crucial

**Linearity = (E\_t^{\text{miss, True}} = E\_T^{\text{miss}}) / E\_t^{\text{miss, True}}** 



G. Siragusa - LNF Spring School, 11-15 May 2009

#### ET<sup>miss</sup> resolution

- The E<sub>T</sub><sup>miss</sup> resolution follows approximately a stochastic behaviour as a function of ΣE<sub>T</sub>
  - Deviation expected at low  $\Sigma E_{T}$  because of the noise and at high  $\Sigma E_{T}$ , where the constant term of the calorimeter resolution dominates
- The angular resolution in events with true E<sup>miss</sup> is mainly guided by the presence of fake E<sup>miss</sup>
  - Good for high values of  $E_{T}^{miss, True}$
  - Detector inefficiencies may perturb the radial symmetry of the physics event



G. Siragusa - LNF Spring School, 11-15 May 2009

#### Fake E<sub>T</sub>miss

The main sources of Fake  $E_{\tau}^{miss}$ 

- Muons which fly outside the detector acceptance or fake high- $p_{\tau}$  muons
- Jet mis-measurement in poorly instrumented regions of the calorimeters
  - For high values (fake  $E_T^{miss>}$  50 GeV) smearing of the effect of many jets
- Calorimeter leakage can be improved using tracking information
- Mis-modeling of material distribution or instrumental failures



G. Siragusa - LNF Spring School, 11-15 May 2009

## $E_{T}^{miss}$ in early data: Minimum Bias

- Many processes can be used to validate and optimize the  $E_{\rm T}^{\rm miss}$  reconstruction on first data
  - Minimum Bias events, mainly dominated by soft *pp* collisions have a large statistics (~100 mb) and a relatively simple selection



G. Siragusa - LNF Spring School, 11-15 May 2009

#### E<sub>T</sub><sup>miss</sup> in early data: energy scale

 $Z \rightarrow \tau \tau$  events are a powerful handle to estimate the  $E_{\tau}^{miss}$  scale, while affected by poor statistics (~200 events in 100 pb<sup>-1</sup>)

• Expected error on the scale: 3% (stat) + 5% (syst)



G. Siragusa - LNF Spring School, 11-15 May 2009

## $E_{T}^{miss}$ in early data: $Z \rightarrow ee$

- Z boson decay in the electron and muon channel are clear signatures
- Possibility to understand the E<sub>T</sub><sup>miss</sup> resolution and bias
- Preferential axes maximize the sensitivity to E<sub>T</sub><sup>miss</sup> measurement (under study)
  - Longitudinal (bisector of the angle formed by the electron
  - Perpendicular (orthogonal to the Longitudinal)
- A bias in the Longitudinal axe is due to the hadronic recoil underestimation



#### Simulated $Z \rightarrow ee$ events (250 pb<sup>-1</sup>)



G. Siragusa - LNF Spring School, 11-15 May 2009

# Data driven measurement of $E_{T}^{miss}$ resolution in W events

16

- At first stage of the analysis we need to know the acceptance (e.g. to measure cross section)
  - Correct MC using measured quantities and a smearing function:  $W_{data} = W_{MC_{truth}} + Gauss_{smear}$  (<hadronic recoil>,  $\sigma$ )
  - The smearing parameters can be obtained from data using Z events
    - Hadronic recoil ("true") = reconstructed  $p_{\tau}^{Z}$
    - Hadronic recoil (reconstructed) = reconstructed  $E_{T}^{miss}$  electron's  $p_{T}$
- The direct comparison of the Hadronic Recoil in W and Z events
  - Relies on the possibility to properly recalculate the  $E_{T}^{miss}$
  - Remove the electrons from the decay: work on going, promising results

## Conclusion

- A proper measurement of the Missing Transverse Energy is so crucial as challenging in the LHC environment
- An overview of the current status of the E<sub>T</sub><sup>miss</sup> reconstruction has been presented, describing algorithms, performance and strategies
- Detailed MC studies demonstrate that the expected performance can be achieved, while runs with random triggers have demonstrated that the description and suppression of the instrumental noise work well
- On going analysis of cosmic and single beam data will provide further understanding in view of collisions

## Outlook

- With 100 pb<sup>-1</sup> of data (at E<sub>CM</sub>=10 TeV) ATLAS can improve Tevatron measurements (e.g. limits on W', Z' masses)
- The way from data to physics will be hard, but exciting
- In view of first collision data physics and performance groups are refining the strategy for a proper  $E_{\tau}^{\rm miss}$  measurement
- Priority is to understand SM physics from data (as is background to interesting new physics processes)