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1. TERMINOLOGY: REGGEIZATION

• Reggeization of any particle assumes
the signaturized amplitude to acquire the
asymptotic behavior like sj(t), when ex-
changing this particle in the t-channel in
Regge limit (t ¿ s). Here j(t) ≡ 1+ω(t)
is the Regge trajectory with ω(0) = 0.

• Signature in the channel tl for multi-
particle production means the (anti-)
symmetrization with respect to the sub-
stitution si,j ↔ −si,j, for i < l ≤ j.
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Fig.1 The amplitude for the process 2 → n + 2.

•Hypothesis of the gluon reggeization claims that in Regge limit the real part of the
NLA-amplitude 2 → n + 2 with negative signature and with octet in all ti-channels has
universal form:
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2. THE PROOF IDEA: BOOTSTRAP RELATIONS AND CONDITIONS

• Bootstrap relations: There is infinite number of necessary and sufficient conditions for
compatibility of the Regge amplitude form (1) with unitarity:
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• Bootstrap conditions: There is finite number of identities making all bootstrap rela-
tions fulfilled. These conditions restrict effective vertices and the gluon trajectory.

The main goal is to prove them hold true.

– Elastic conditions constrain the ker-
nel (K̂) and the effective vertex de-
scribing the transition of the initial
particle (B) to the final one (B′):

|B̄′B〉 = gΓ
Rn+1

B′B |Rω(qB⊥)〉,
K̂|Rω(q⊥)〉 = ω(q2

⊥)|Rω(q⊥)〉,
– Inelastic conditions appear in ele-
mentary (2 → 3) inelastic amplitudes.
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Fig.2 sj,n+1-channel discontinuity calculation via
unitarity relation

|J̄iRi+1〉 + Ĵi |Rω(q(i+1)⊥)〉 g q2
(i+1)⊥ = |Rω(qi⊥)〉 g γJi
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, (3)



3. INELASTIC CONDITION: |J̄iRi+1〉 — NLO IMPACT-FACTOR

• Impact factor of the jet production is the first component of the inelastic bootstrap
condition, intrinsically it appears as logarithmically non-enhanced term in the disconti-
nuity (in s0,1 or s1,2 channel) for the process 2 → 3.
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Further we consider the most nontrivial NLO impact-factor: Jj = G(k)

〈GR1|G1G2〉 = 〈GR1|G1G2〉v.c. + 〈GR1|G1G2〉loop. (4)
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4. INELASTIC CONDITION: ONE GLUON PRODUCTION OPERATOR

• One gluon production operator is the second component of the inelastic bootstrap
condition, describing the transition reggeon-reggeon state to gluon-reggeon-reggeon.
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5. PREVIOUSLY OBTAINED RESULTS:

• By the direct calculation we (V.S., M.G., A.V.) demonstrated that the inelastic bootstrap
condition was fulfilled being projected onto the colour octet in the t-channel:
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•We introduced the operator formulation of the bootstrap reggeon formalism: for bootstrap
relations and conditions. Further we conjectured that the following condition is valid for
arbitrary color representation:
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• In V.S. Fadin, R. Fiore, M.G. Kozlov, A.V. Reznichenko, Phys. Lett.B 639 (2006) using
the direct discontinuity calculation through the unitarity in terms of our components
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and applying granted elastic and inelastic NLO bootstrap conditions we proved all boot-
strap relations to be fulfilled. So the last millstone on the way of reggeization proof was
the validity of (5).



6. DIFFERENT COLOUR REPRESENTATIONS IN T-CHANNEL:

This last unproved bootstrap condition (Ji is one gluon) can be present in projected form:

〈G ′1G ′2|Ĵi |Rω(q(i+1)⊥)〉 g q2
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First of all, it was proved for the octet (the most important) in the t-channel. There is no
r.h.s. for any other t-channel representations R 6= 8, since from the explicit form of |Rω(qi⊥)〉:
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From the explicit form of the effective vertices it is easy to see that there are only THREE
nontrivial colour structures into the operator of the gluon production 〈G ′1G ′2|Ĵi |Rω(q(i+1)⊥)〉
and into the impact-factor 〈G ′1G ′2|J̄iRi+1〉. The optimal choice is the “trace-based”:

Tr[T c2T aT c1T i], Tr[T aT c2T c1T i], Tr[T aT c1T c2T i] (8)

• The first colour structure is symmetric with respect to c1, c2 and can be reduced:
Tr[T c2T aT c1T i] = N2

c
2 P (0) + Nc+2

2 P (27) + 2−Nc
2 P (Nc>3) Corresponding coefficient had not

been calculated before. It is the last problem on the reggeization proof way.

• The coefficient at second colour structure Tr[T aT c2T c1T i] is very similar to the octet case,
and whereby is considered to be calculated.

• The last coefficient (at Tr[T aT c1T c2T i]) can be easily obtained from the previous one.



7. RESULTS AND PLANS:

•We formulated the gluon reggeization proof in operating form through the bootstrap
approach based on unitarity.

•We proved all bootstrap conditions (necessary for reggeization proof) to be correct when
projecting on octet colour representation. But it is not sufficient for the final proof!

•We proved all bootstrap conditions to be correct for second and third colour structure
and for all colour structures in fermionic sector of the inelastic bootstrap condition.

•We calculated in the dimensional regularization all components of the last coefficient at
the symmetric colour structure for the inelastic bootstrap condition.

• For this structure we demonstrated the cancellation of all singular terms (collinear regu-
larization, 1

ε2
, and 1

ε ), rational, and logarithmic terms.

•We are planing to demonstrate the cancellation for dilogarithmic and double logarithmic
terms in the inelastic bootstrap condition in the nearest future.
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