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1. TERMINOLOGY: REGGEIZATION

e Reggeization of any particle assumes Sok. — = Skt
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the signaturized amplitude to acquire the A Sok. ” TS S| B

asymptotic behavior like s/(). when ex- |l Al B P, P r |r.
changing this particle in the t-channel in
Regge limit (t < s). Here j(t) = 1+ w(t) Re
is the Regge trajectory with w(0) = 0.

e Signature in the channel ¢; for multi- N GG
particle production means the (anti-)
symmetrization with respect to the sub-
stitution s; ; <= —s; 5, for i <1 < 7.

A B

Fig.1 The amplitude for the process 2 — n + 2.

e Hypothesis of the gluon reggeization claims that in Regge limit the real part of the
NLA-amplitude 2 — n + 2 with negative signature and with octet in all ¢;,-channels has
universal form:
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2. THE PROOF IDEA: BOOTSTRAP RELATIONS AND CONDITIONS

e Bootstrap relations: There is infinite number of necessary and sufficient conditions for
compatibility of the Regge amplitude form (1) with unitarity:
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e Bootstrap condltlons: There is finite number of identities making all bootstrap rela-
tions fulfilled. These conditions restrict effective vertices and the gluon trajectory:.

The main goal is to prove them hold true.
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— Elastic conditions constrain the ker-
nel (I&) and the effective vertex de- | |
scribing the transition of the initial
particle (B) to the final one (B'):
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— Inelastic conditions appear in ele-
mentary (2 — 3) inelastic amplitudes.
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Fig.2 s; 4 1-channel discontinuity calculation via
unitarity relation
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3. INELASTIC CONDITION: |J;R;.1) — NLO IMPACT-FACTOR

e Impact factor of the jet production is the first component of the inelastic bootstrap
condition, intrinsically it appears as logarithmically non-enhanced term in the disconti-
nuity (in sg1 or s19 channel) for the process 2 — 3.
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Further we consider the most nontrivial NLO impact-factor: J; = G(k)
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4. INELASTIC CONDITION: ONE GLUON PRODUCTION OPERATOR

e One gluon production operator is the second component of the inelastic bootstrap
condition, describing the transition reggeon-reggeon state to gluon-reggeon-reggeon.
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5. PREVIOUSLY OBTAINED RESULTS:

e By the direct calculation we (V.S., M.G., A.V.) demonstrated that the inelastic bootstrap
condition was fulfilled being projected onto the colour octet in the t-channel:
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e We introduced the operator formulation of the bootstrap reggeon formalism: for bootstrap
relations and conditions. Further we conjectured that the following condition is valid for
arbitrary color representation:
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e In V.S. Fadin, R. Fiore, M.G. Kozlov, A.V. Reznichenko, Phys. Lett.B 639 (2006) using
the direct discontinuity calculation through the unitarity in terms of our components
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and applying granted elastic and inelastic NLO bootstrap conditions we proved all boot-

strap relations to be fulfilled. So the last millstone on the way of reggeization proof was
the validity of (5).



6. DIFFERENT COLOUR REPRESENTATIONS IN T-CHANNEL:

This last unproved bootstrap condition (J; is one gluon) can be present in projected form:
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First of all, it was proved for the octet (the most important) in the t-channel. There is no
r.h.s. for any other t-channel representations R # 8, since from the explicit form of |R,,(g;1)):
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From the explicit form of the effective vertices it is easy to see that there are only THREE

nontrivial colour structures into the operator of the gluon production (G\Gh|\ T, |Ro(qais1)L))
and into the impact-factor (G{G5|J;R;+1). The optimal choice is the “trace-based™
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e The first colour structure is symmetric with respect to c¢1, ¢5 and can be reduced:
. 2
Tr|[T2TYTT"| = %P(O) + %Pm) + Q_TMP(NC>3> Corresponding coefficient had not
been calculated before. It is the last problem on the reggeization proof way.

e The coefficient at second colour structure Tr[T*T>T1T"] is very similar to the octet case,
and whereby is considered to be calculated.

e The last coefficient (at Tr[T%T1TT"]) can be easily obtained from the previous one.



7. RESULTS AND PLANS:

e We formulated the gluon reggeization proof in operating form through the bootstrap
approach based on unitarity:.

e We proved all bootstrap conditions (necessary for reggeization proof) to be correct when
projecting on octet colour representation. But it is not sufficient for the final proof!

e We proved all bootstrap conditions to be correct for second and third colour structure
and for all colour structures in fermionic sector of the inelastic bootstrap condition.

e We calculated in the dimensional regularization all components of the last coefficient at
the symmetric colour structure for the inelastic bootstrap condition.

e For this structure we demonstrated the cancellation of all singular terms (collinear regu-
larization, 6%, and % ), rational, and logarithmic terms.

e We are planing to demonstrate the cancellation for dilogarithmic and double logarithmic
terms in the inelastic bootstrap condition in the nearest future.
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