CLIC combiner ring lattice and stability

D. Alesini, C. Biscari, E.J. Wilson* LNF, Frascati *CERN, Geneve

Drive beam

Rf production

- High charge
- Short bunches
- Short spacing

CTF3 must demonstrate drive beam characteristics feasibility

CTF3 versus CLIC drive beam parameters

	CTF3	CLIC
Energy (GeV)	0.15	1.79
Bunch charge (nC)	2.3	9.6
Average final current (A)	35	144
Train final duration (nsec, m)	140,42	55.6,17
Bunch final separation (nsec)	0.067	0.067
N bunches/train	2100	834
Bunch length (ps, mm)	3.4,1	1.3 , 0.4
Peak current (A)	700	7400
Linac frequency (MHz)	2999	937
Pulse length (total train) (µs)	1.40	92
F Multiplication Factor	2 x 5	2 x 4 x 4

Main challenge for CTF3From beam dynamics point of viewLow energy and high current bunches manipulationWith emittance preservation in 3DPath length control

CTF3 frequency multiplication system layout

CTF3 - COMBINER RING

Isochronicity and achromaticity in each arc of the ring

 π phase advance between rf deflectors

Wigglers for path length tuning

Wiggler sections

From Linac to CR extraction

Table name = TWISS

Dispersion

2nd order isochronicity: $T_{5i6} = 0 \ \forall i$

$$ct = (ct)_{0+} R_{56} \frac{\Delta p}{p} + T_{516} x_0 \frac{\Delta p}{p} + T_{526} x'_0 \frac{\Delta p}{p} + T_{536} y_0 \frac{\Delta p}{p} + T_{536} y_0 \frac{\Delta p}{p} + T_{546} y'_0 \frac{\Delta p}{p} + T_{556} (ct)_0 \frac{\Delta p}{p} + T_{566} \left(\frac{\Delta p}{p}\right)^2$$

2nd order terms

relate transverse to longitudinal phase planes

Contribution of Transfer Lines high order terms can be as strong as rings'

FLEXIBILITY in the design is essential

Energy spread coming from the LINAC :

- stretches the bunches

 (possibility of increasing R₅₆ in stretcher up to ~30-40 cm in order to reduce the necessary Δp/p for obtaining the 2mm long bunches)
- * produce emittance filamentation

For a given R_{56:} Small T₅₆₆ by small dispersion -> high betatron functions -> horizontal transverse plane more critical

Low betatron functions -> higher dispersion -> longitudinal plane more critical

2nd order term depends on the linear optics configuration

Example : Stretcher - compressor

Global optimisation

$$R_{56} = 0$$

B

 $R_{56} = 0$

$$R_{56} = 0.3$$

At CR input

After the stretcher After the DL

 $\sigma_1 = 1 \text{ mm} \quad \Delta p/p = 1\%$

CSR effect in CTF3

The energy losses give rise to relative phase errors between bunches through non-perfect ring isochronicity, which result in deterioration of the timing both among individual bunches and merging trains. The energy spread, in turn, leads to bunch lengthening and phase space distortion.

The energy spread due to CSR is $\Delta E = \pm 0.9$ MeV, or $\Delta E/E \sim \pm 0.5\%$ for a 2 mm long bunch.

It is not reasonable to have bunches shorter than 2 mm in the CR since the energy spread grows rapidly with the bunch length (faster than ~ σ -4/3). The energy spread for a 1 mm long bunch would exceed the acceptable value of $\Delta E/E = \pm 1\%$.

CLIC Drive Beam

- Higher energy (x 15)
- Higher current (x 4)
- No constraints (up to now) on layout and magnet characteristics
 - Design based on CTF3 one

Following CTF3 design: Three equal dipoles $(30^\circ, 30^\circ, 30^\circ)$ $D_x max = 0.7 m$ $T_{566} = -9$

Longer central dipole (24°, 42°, 24°) $D_x \max = 0.5 m$ $T_{566} = -4$

Arc betatron functions

Three equal dipoles

Longer central dipole

Arc to wiggler center

Arc to injection/extraction

Total ring

Main ring parameters

C (m)	70.
E (GeV)	1.9
B (T)	1.8
β _x max (m)	8
β _y max (m)	9
D _x max (m)	0.47
R ₅₆ (m)	0.0
T ₅₆₆ (m) sext off	- 4.0
N quads	48
N sext	16 to 24

Effect of beam loading in RF DEFLECTORS on beam dynamics Applied to CTF3 case

Frequency	2.99855 [GHz]
Cell length	33.33 [mm]
Cell radius	56.01 [mm]
Iris internal radius	21.43 [mm]
Iris thickness	9.53 [mm]
Number of active cells	10
Deflector length	33 [cm]
Filling time	47 [ns]
r _s /Q	1425 MΩ/m
Input power (P _{in})	2 MW
Deflection	5 [mrad]

TRACKING CODE SCHEME

tune dependence (fixed injection error)

Beam loading at RF deflectors

- the beam emittance growth due to the wake field in the RF deflectors is negligible if the trains are injected perfectly on axis
- in case of injection errors the final emittance growth depends strongly on the betatron phase advance between the RF deflectors. It can be negligible with the appropriate choice for phase advance, with large tolerance
- simulations taking into account the finite bunch length shows that the scenario does not change for the central part of the bunches with respect to the case of zero bunch length. However, for some particular injection errors, the bunch tails can contribute to the increase of the total transverse bunch emittances.