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Collaborative project involving groups from the UK, EU and US

• Strathclyde – injector, laser-plasma & FEL: experiments & theory

• CCLRC RAL – theory & exps.: wakefield studies and diagnostics

• Oxford – plasma channels

• Imperial – all-optical injector, laser-plasma acceleration

• CCLRC Daresbury – Injector, undulator & FEL

• Abertay-Dundee – injector, electron diagnostics & FEL

• St Andrews University – theory
GOALS: Accelerate to 1 GeV in 1cm using a wakefield 
accelerator. Demonstrate  coherent radiation source: FEL

AAdvanced dvanced LLaseraser PPlasma lasma HHighigh--energyenergy

AAcceleratorsccelerators towardstowards XX--raysrays:   ALPHA:   ALPHA--XX ( α−ξ )
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OutlineOutline

• Overview and involvement 
• Laser-plasma wakefield accelerator
• Plasma channel
• Injector development 
• Free-electron laser 
• Diagnostics
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• Dino Jaroszynski, Klaas Wynne, Bob 
Bingham, Ken Ledingham, Albert 
Reitsma, Yuri Saviliev, Slava Pavlova, 
Riju Issac, David Jones, Bernhard 
Ersfeld, Steven Jamison, Gregory 
Vieux, Enrico Brunetti – Strathclyde

• Karl Krushelnick, Bucker Dangor , 
Zulfika Najmudin, Stuart Mangles –
Imperial College

• Bob Bingham, Henry Hutchinson, 
Peter Norreys, Stefan Karsch, Chris 
Murphy – RAL (CCLRC)

• Simon Hooker, Justin Wark, Keith 
Burnett, Ian Walmsley, David Spence, 
Tony Gonsalves – Oxford

• Allan Gillespie, Allan McCloud, 
Steven Jamison, – Abertay-Dundee

• Alan Cairns – St Andrews

• Mike Poole, Jim Clark – Daresbury 
(CCLRC)

• Gennady Shvets – Fermilab

• Terry Garvey, J Roudier – LAL Orsay

• Antonio Ting – NRL

• Chan Joshi, Warren Mori – UCLA

• Tom Katsouleas – USC

• Padma Shukla – Bochum

• Tito Mendonca, Nelson Lopes, Luis 
Silva – IST Portugal

• Kees van der Geer, Marieke Loos, 
Bas van der Geer – The Netherlands

• Andrey Savilov, Vladimir Bratman –
IAP, Nizhniy Novgorod
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Main areas of research:

Injectors (conventional and all-optical)

Laser-plasma wake-field acceleration

Plasma capillaries

Free-electron laser (FEL)

Beam transport systems

Diagnostics

10 MeV
injector

beam 

transport 

beam 

transport 

plasma 
filled 

capillary

200 period 
undulator 

FEL

IR to VUV 

SASE or 
SACSE

Terawatt laser
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TOPS (Strathclyde): 5TW source (800nm, 50fs 10Hz 

250mJ) upgrade to 1J (20 TW)

ASTRA (RAL): 10 TW source (800nm, 50fs, 10Hz, 500 mJ) 

upgrade to 1J

Oxford: 2 TW source (800nm, 50fs, 10Hz, 100 mJ) 

Strathclyde: 10 MeV High-brightness sub-picosecond 

photoinjector – being constructed
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Wake behind 
optical pulse travels 
and laser group 
velocity
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• Acceleration field in plasma                                acceleration gradients > GeV/cm

• Electron is trapped in wave and gains energy 

• Charge 100 pC

• Bunch duration 100 fs

• Peak current 1 kA

• Emittance 

• Energy spread < 1%

• Brightness 

• Plasma density 1017 – 1018 cm-3

• Laser 800 nm  1 J 30 fs
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Main challenges
Inject relativistic electron bunch  into a small volume of  phase-space

Injecting e-m radiation and electron beam into channel

Diagnostics

Laser ponderomotive 
force creates wake

nε γ σ= Ω
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Wakefield accelerationWakefield acceleration

λp
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Simulations for AlphaSimulations for Alpha--XX

Conventional injector All-optical injector
Collaboration with Pulsar Physics
from The Netherlands for DC/RF
design & beam transport study.

Use of the general-purpose GPT
particle tracking code

Use of Osiris PIC-code in collabo-
ration with visiting fellows from
UCLA (USA) & IST (Portugal) 

Wakefield accelerator
Use of our own (fast) codes for laser 
pulse & electron bunch dynamics in 
laser wakefield accelerator

Free-electron laser
GPT contains elements for self-
consistent FEL calculations

Plasma channel
At this time, no plasma channel 
calculations are performed

see
next
slide
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Wakefield acceleratorWakefield accelerator

• Fully self-consistent 1-D model of coupled laser pulse, wakefield and e-bunch evolution
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Photon kinetic theoryPhoton kinetic theory
• describes photon collective behaviour in plasma with ray-tracing equations
→ frequency change due to spatio-temporal refractive index variation

• valid if refractive index changes slowly compared to optical cycle/wavelength
→ refractive index determined by quasi-static plasma electron density profile
→ frequency goes up/down in accelerating/decelerating part of wakefield

example: 
photon dynamics 
in a plasma wave
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Electron accelerationElectron acceleration

• energy gain limited by dephasing, caused by difference

between velocities of electron and wakefield

• scaling                                                         favours low plasma density 

gwfel vvcv ≈>≈
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−500 −400 −300 −200 −100 0
0

3

6

9

lo
g(
γ)

(fs) /cζ

electron 
orbit

pulse 
intensity

separatrix

note logarithmic
energy scale



Frascati 2004
Department of Physics 
University of Strathclyde

α−ξ
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EfficiencyEfficiency
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at injection just after dephasing

• ideal (almost 100%) conversion
of wake energy into bunch energy

• all electrons accelerated
• wakefield suppressed at rear part of bunch

→ bunch slips out of ideal position
→ large spread of accelerating field

induces large energy spread

• slight loss of energy from bunch to wake
• most electrons decelerated

• complicated structure of accelerating
field along electron bunch

effect of bunch wakefield = beam loading
• central to wake-to-bunch energy transfer, 
• finite charge required for energy absorption from the wakefield 

(fs) /cζ
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Energy spreadEnergy spread
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at dephasing

• energy spread induced by spatial variation of accelerating field along bunch
• can be compensated for by combined effect of dephasing and beam loading 
• requires precise tuning of injection phase, bunch charge and bunch length

• during first half of acceleration, front of bunch gains more energy than rear 
→ energy spread increases

• during second half of acceleration, rear of bunch gains more energy than front
→ energy spread decreases and reaches minimum
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Laser Wakefield AccelerationLaser Wakefield Acceleration

laser pulse 
envelope

electrostatic 
wakefield

bunch density

energy density of 
wakefield

laser pulse envelope dynamics:
ponderomotive wakefield excitation, electron bunch acceleration, 

phase slippage, beam loading

z-vgt (units of λp)
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Laser pulse envelope dynamicsLaser pulse envelope dynamics

laser pulse amplitude: a0
laser pulse energy depletion rate: ωd ~ a0

2 ωs

Linear regime: a0² « 1, ωd « ωs: pulse energy loss through photon deceleration
without envelope modulation, static wakefield, low energy efficiency

Nonlinear regime: a0² ~ 1, ωd ~ ωs: pulse energy loss through photon deceleration
and strong envelope modulation, dynamic wakefield, better energy efficiency

z-vgt (units of λp)

laser pulse envelope
plasma density modulation

k / k0

Fourier spectrum
of laser pulse
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r 0 = 150 µm capillary

n (0) = 1018 cm-3

I > 1017 W/cm2

2 – 5 cm

Plasma capillary waveguide 
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Phase-matching possible using tapered capillary
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Measurements of Measurements of 

guiding in plasma guiding in plasma 
capillaries at Strathclydecapillaries at Strathclyde

400 mm

~ 60 µm dia.~ 60 µm dia.
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electron density profile measured at Oxfordelectron density profile measured at Oxford

– Electron density measured 
with Mach-Zender
interferometer for τ = 60 ns.

– Initial hydrogen pressure is 
63 mbar.

– Central section parabolic
electron density profile: 
matched spot size 37 µm.

– 90 % transmission over 4 cm 
channel

– > 105 shots

D. J. Spence & S. M. Hooker Phys. Rev. E 63 015401 (2000)
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channelschannels

• Transverse interferometry of a plasma channel
• Initial hydrogen pressure ~ 100 mbar

channel
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Development of injector technologyDevelopment of injector technology

• Conventional accelerator Technology: Combined DC and RF accelerator

• All optical injectors: self-modulated wakefield & wavebreaking

• Pre-buncher

Main challenges

To Achieve:

synchronisation (< 20 fs)

sufficient charge – goal: 100 pC

short duration – goal: < 100 fs

good emittance – goal:

modest energy spread

combat space-charge effects and electron broadening due to CSE

( /2)pλ<

1  mm mradε γ σ π= Ω <
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Conventional injector technologyConventional injector technology

10 MeV Hybrid DC/RF accelerator – based on design by 
Marnix van der Wiel’s group in Eindhoven

RF booster 
stage

DC pre-
accelerator

RF accelerator 

S-band (3 GHz)

10 MW to produce a 
gradient of 100 MV/m

100 pC - 1 nC

8 MeV 

100 fs bunches 

2% energy spread

ε  < 1 π mm mrad

DC pre-
accelerator

HV: 1ns 1 MV

photoinjector

2 ½ cell booster

Based on original 
design by BNL

( design by van der Wiel, 
Geer and Loos, 2001)

Photocathode ensures 
synchronisation
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Compression in twoCompression in two--stage stage 

acceleratoraccelerator

1 - low plasma density                      2 - high plasma density

long plasma wavelength                     high gradient for acceleration 
for compression
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ASTRA: Imperial College and RALASTRA: Imperial College and RAL
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Coherent radiation source: Coherent radiation source: 
FreeFree--electron laser (FEL)electron laser (FEL)

• Use output of wakefield accelerator to drive FEL

• Take advantage of electron beam properties

• Coherent spontaneous emission: prebunched FEL

• Operate in superradiant regime: FEL amplifier

Potential compact future x-ray FEL

• Need GeV beam with < 50 fs electron beam with I  > 1 kA

• Need to operate in superradiant regime to provide useable 
beam: SASE alone is not adequate

• Need to consider injection
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Design by J. Clark 
and B. Shepherd 
(Daresbury) and 
Kees van der Geer 
(Netherlands)
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• Electrons from gas-jets 

• FELIX electron bunch measurements

• FEL far-infrared measurements

• Spectral encoding 

• Cross-correlation

Diagnostics: SingleDiagnostics: Single--shot electroshot electro--optic optic 
detection (detection (AbertayAbertay & Strathclyde)& Strathclyde)
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SingleSingle--shot and direct measurementsshot and direct measurements

THz 
pulse

chirped sampling pulse

electro-optic 
crystal

time-to-frequency 
transformation

pol.
spectrometer

Coulomb field of 
electron bunch

Lorentz contraction
1
γ

e-

transition 
radiation

or

direct 
measurement 
of Coulomb 
field
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Comparison of Comparison of 
techniques (Strathclyde)techniques (Strathclyde)

Jamison, et al. 
Optics Letters 
(2003)
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~800fs

~600fs
30MeV→110fs resolution 
(at 1mm from beam)

Measurement of bunch after Measurement of bunch after 
FELIX FELIX undulatorundulator during lasingduring lasing

Attempt to measure sub-structure of 
bunch from lasing at λ=30µm (period of 100fs)

30-July-2003
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