

MesoBioNano-Science

Radiation from a modulated positron beam in the Crystalline Undulator Andriy Kostyuk Andrei Korol Andrey Solov'yov Walter Greiner

MesoBioNano-Science Group @ FIAS (www.flas.uni-frankfurt.de/mbn) 《 다 ▷ 《 @ ▷ 《 문 ▷ 《 문 ▷ 《 문 ▷ 중

Motivation

Based on

R.Brinkmann et al. (Ed.) 'Tesla FEL. Technical design report. Supplement.'

October 31, 2008

Image: A matrix Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

-∢ ≣ →

Motivation

Crystalline Undulator

A.V. Korol, A.V. Solov'yov, W. Greiner, J. Phys. G **24**, L45 (1998); Int. J. Mod. Phys. E **8**, 49 (1999).

Crystalline Undulator

A.V. Korol, A.V. Solov'yov, W. Greiner Topics in Heavy Ion Phys. (2005) 73-86.

A.V. Korol, A.P. Kostyuk, A.V. Solov'yov, W. Greiner (2008), in preparation

October 31, 2008

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

< 17 ►

- ₹ ₽ >

Particles in an Undulator

Undulator vs Laser

Particles in a Laser

Expected Brilliance

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Will the beam preserve its modulation in a crystalline channel at sufficiently large penetration depth?

Channeling Oscillations

October 31, 2008

Beam Demodulation

Demodulation within one Undulator Period

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Demodulation within one Undulator Period

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Demodulation within Dozens of Undulator Periods

Demodulation within Dozens of Undulator Periods

October 31, 2008

Quantitative Analysis is Necessary

What is the characteristic length at which the beam gets demodulated? Is it possible to build a crystalline undulator with $L_{\rm dm}/\lambda_{\mu}\gg 1$?

Particle Distribution

 $f(t, z; \xi, E_y)$ is the distribution function of channeling particles with respect to the angle

The distribution depends on the penetration depth z and time t.

October 31, 2008

Kinetic Equation of Fokker-Planck Type

$$\frac{1}{c}\frac{\partial f}{\partial t} + \frac{\langle v_z \rangle}{c}\frac{\partial f}{\partial z} = D_0 \left[\frac{\partial}{\partial E_y} \left(E_y \frac{\partial f}{\partial E_y}\right) + \frac{1}{E}\frac{\partial^2 f}{\partial \xi^2}\right]$$
$$D_0 = \frac{mc^2}{8} \langle n_e \rangle \int d\Theta \frac{d\sigma}{d\Theta} \Theta^2$$

Longitudinal Velocity:

$$\langle \mathbf{v}_{\mathbf{z}} \rangle = c \sqrt{1 - \frac{1}{\gamma^2}} \left(1 - \frac{\xi^2}{2} \right) \left(1 - \frac{E_y}{2E} \right)$$
$$\approx c \left(1 - \frac{1}{2\gamma^2} - \frac{\xi^2}{2} - \frac{E_y}{2E} \right)$$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

一日

Kinetic Equation of Fokker-Planck Type

$$\frac{1}{c}\frac{\partial f}{\partial t} + \frac{\langle v_z \rangle}{c}\frac{\partial f}{\partial z} = D_0 \left[\frac{\partial}{\partial E_y} \left(E_y \frac{\partial f}{\partial E_y}\right) + \frac{1}{E}\frac{\partial^2 f}{\partial \xi^2}\right]$$
$$D_0 = \frac{mc^2}{8} \langle n_e \rangle \int d\Theta \frac{d\sigma}{d\Theta} \Theta^2$$

Longitudinal Velocity:

$$\langle v_z \rangle = c \sqrt{1 - \frac{1}{\gamma^2}} \left(1 - \frac{\xi^2}{2} \right) \left(1 - \frac{E_y}{2E} \right)$$
$$\approx c \left(1 - \frac{1}{2\gamma^2} - \frac{\xi^2}{2} - \frac{E_y}{2E} \right)$$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

一日

Kinetic Equation of Fokker-Planck Type

$$\frac{1}{c}\frac{\partial f}{\partial t} + \frac{\langle v_z \rangle}{c}\frac{\partial f}{\partial z} = D_0 \left[\frac{\partial}{\partial E_y} \left(E_y \frac{\partial f}{\partial E_y}\right) + \frac{1}{E}\frac{\partial^2 f}{\partial \xi^2}\right]$$
$$D_0 = \frac{mc^2}{8} \langle n_e \rangle \int d\Theta \frac{d\sigma}{d\Theta} \Theta^2$$

Longitudinal Velocity:

$$\langle v_z \rangle = c \sqrt{1 - \frac{1}{\gamma^2}} \left(1 - \frac{\xi^2}{2} \right) \left(1 - \frac{E_y}{2E} \right)$$
$$\approx c \left(1 - \frac{1}{2\gamma^2} - \frac{\xi^2}{2} - \frac{E_y}{2E} \right)$$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

一日

If the initial beam is periodically modulated it can be represented as a Fourier series with respect to the time:

$$f(t, z; \xi, E_y) = \sum_{j=-\infty}^{\infty} g_j(z; \xi, E_y) \exp(ij\omega t).$$

where $g_{j}^{*}(z; \xi, E_{y}) = g_{-j}(z; \xi, E_{y})$

It is sufficient to consider only one harmonic. We substitute

$$f(t, z; \xi, E_y) = g(z; \xi, E_y) \exp(i\omega t)$$
$$i\frac{\omega}{c}g(z; \xi, E_y) + \frac{\langle v_z \rangle}{c}\frac{\partial g}{\partial z} = D_0 \left[\frac{\partial}{\partial E_y} \left(E_y\frac{\partial g}{\partial E_y}\right) + \frac{1}{E}\frac{\partial^2 g}{\partial \xi^2}\right]$$

Separation of variables

$$\frac{D_0}{E} \frac{1}{\Xi(\xi)} \frac{d^2 \Xi(\xi)}{d\xi^2} - i\omega \frac{\xi^2}{2} = C_{\xi}$$
$$\frac{D_0}{\mathcal{E}(E_y)} \frac{d}{dE_y} \left(E_y \frac{d\mathcal{E}(E_y)}{dE_y} \right) - i\omega \frac{E_y}{2E} = C_y$$
$$\frac{1}{\mathcal{Z}(z)} \frac{d\mathcal{Z}(z)}{dz} + \frac{i\omega}{2\gamma^2} = C_z$$

 $\mathcal{C}_{z} = \mathcal{C}_{y} + \mathcal{C}_{\xi}$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

米田 とくほと くほと

The Solution

$$g(\mathbf{z};\boldsymbol{\xi}, E_{y}) = \exp\left(-i\frac{\omega}{c}\mathbf{z}\right) \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} \mathfrak{c}_{n,k} \Xi_{n}(\boldsymbol{\xi}) \mathcal{E}_{k}(E_{y}) \mathcal{Z}_{n,k}(\mathbf{z}),$$
$$\Xi_{n}(\boldsymbol{\xi}) = H_{n} \left(e^{i\pi/8} \sqrt[4]{\frac{\omega E}{2cD_{0}}} \boldsymbol{\xi} \right) \exp\left(-\frac{1+i}{4} \sqrt{\frac{\omega E}{cD_{0}}} \boldsymbol{\xi}^{2}\right).$$

 $H_n(\ldots)$ are Hermite's polynomials.

$$\mathcal{E}_{k}(E_{y}) = \exp\left(-\frac{1+i}{2}\sqrt{\frac{\omega}{cD_{0}E}}E_{y}\right)L_{\nu_{k}}\left((1+i)\sqrt{\frac{\omega}{cD_{0}E}}E_{y}\right)$$

 $L_{\nu_k}(\ldots)$ is Laguerre's function.

くぼす くほう くほう

The Solution

$$g(z;\xi,E_y) = \exp\left(-i\frac{\omega}{c}z\right) \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} \mathfrak{c}_{n,k} \Xi_n(\xi) \mathcal{E}_k(E_y) \mathcal{Z}_{n,k}(z),$$

$$\mathcal{Z}_{n,k}(z) = \exp\left\{-\frac{z}{L_{d}}\left[\alpha_{k}(\kappa) + (2n+1)\frac{\sqrt{\kappa}}{j_{0,1}}\right] -i\omega z \left[\frac{1}{2\gamma^{2}} + \theta_{L}^{2}\beta_{k}(\kappa) + \theta_{L}^{2}\frac{(2n+1)}{2j_{0,1}\sqrt{\kappa}}\right]\right\}$$

Dechanneling length:

Lidhard's angle:

$$L_{\rm d} = 4 U_{\rm max} / (j_{0,1}^2 D_0)$$
 $J_0(j_{0,1}) = 0$ $heta_{\rm L} = \sqrt{2 U_{\rm max} / E}$

$$\kappa = \pi \frac{L_{\rm d}}{\lambda} \theta_{\rm L}^2$$

• • = • • = •

The Transcendental Equation for $\alpha_k(\kappa)$ and $\beta_k(\kappa)$

$$\kappa = \pi rac{L_{\mathrm{d}}}{\lambda} heta_{\mathrm{L}}^2$$
 $L_{
u_k}\left(rac{(1+i)}{2} j_{0,1} \sqrt{\kappa}
ight) = 0.$

$$\alpha_{k}(\kappa) = \frac{\sqrt{\kappa}}{j_{0,1}} (2\Re [(1+i)\nu_{k}] + 1)$$

$$\beta_{k}(\kappa) = \frac{1}{2j_{0,1}\sqrt{\kappa}} (2\Im [(1+i)\nu_{k}] + 1)$$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

< 回 > < 三 > < 三 >

Asymptotic Behaviour

$$g(z;\xi,E_y) = \exp\left(-i\frac{\omega}{c}z\right) \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} \mathfrak{c}_{n,k} \Xi_n(\xi) \mathcal{E}_k(E_y) \mathcal{Z}_{n,k}(z),$$

$$\mathcal{Z}_{n,k}(z) = \exp\left\{-\frac{z}{L_{d}}\left[\alpha_{k}(\kappa) + (2n+1)\frac{\sqrt{\kappa}}{j_{0,1}}\right] -i\omega z\left[\frac{1}{2\gamma^{2}} + \theta_{L}^{2}\beta_{k}(\kappa) + \theta_{L}^{2}\frac{(2n+1)}{2j_{0,1}\sqrt{\kappa}}\right]\right\}$$

$$g(\mathbf{z};\xi,E_y) \asymp \exp\left(-i\frac{\omega}{c}\mathbf{z}\right)\mathfrak{c}_{0,1}\Xi_0(\xi)\mathcal{E}_1(E_y)\mathcal{Z}_{0,1}(\mathbf{z}),$$

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

- 4 回 ト 4 注 ト 4 注 ト

Asymptotic Particle Distribution vs. ξ and z

Asymptotic Particle Distribution vs. E_y and z for $\kappa = 10$

Asymptotic Behaviour

$$g(z; \xi, E_y) \propto \exp\left(-z/L_{\mathrm{dm}} - i\omega/u_z z\right)$$

Demodulation Length:

$$L_{\rm dm} = \frac{L_{\rm d}}{\alpha_1(\kappa) + \sqrt{\kappa}/j_{0,1}}$$

Phase velocity:

$$u_{z} = \left[1 + \frac{1}{2\gamma^{2}} + \theta_{\rm L}^{2} \left(\beta_{k}(\kappa) + \frac{1}{2j_{0,1}\sqrt{\kappa}}\right)\right]^{-1}$$
$$\kappa = \pi \frac{L_{\rm d}}{\lambda} \theta_{\rm L}^{2}$$

A B F A B F

Demodulation Length

October 31, 2008

Parameter κ

¥

October 31, 2008

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

> < = > < =</p>

Summary

- Beam demodulation is an important factor determining the physical limits on the applicability domain of the crystalline undulator based hard X ray and gamma ray laser.
- The beam evolution can be described by a partial differential equation of Fokker-Planck type which can be solved analytically for a parabolic interplanar potential.
- A channeling beam can preserve its modulation at sufficiently large penetration depths so that coherent radiation in the crystalline undulator is feasible.
- The bent crystal laser is most suitable for the application in the photon energy range of hundreds keV where the demodulation length not much smaller than the dechanneling length.

・ 何 ト ・ ヨ ト ・ ヨ ト

Aknowlegements

I thank the organizers for this great conference in this beautiful place.

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Aknowlegements

Thank you for your attention.

This work has been supported by the European Commission (the PECU project, Contract No. 4916 (NEST)).

October 31, 2008

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

. .

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

イロト イヨト イヨト イヨト

2

Gamma Klystron

Meso Bio Nano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

→ ∃ → < ∃</p>