

Measurement of photon pulse energy

Fast Thermopile Detector YBa₂Cu₃O₇ based Bolometer

Multi Channel Plate

• Photon pulse energy 30-100 ? J

• Agreement of measurements

J. Rossbach/DESY

Electron bunch length

(earlier) measurement

Simulation (P.Piot)

TeV Energy Superconducting Linear Accelerator

Coherence length known from spectrum bandwidth & from theory <u>
Number of spikes in spectrum provides photon pulse length</u>

TTF SASE radiation spectrum at saturation

LIBSK

Simulation in time domain based on measured fluctuation

ii seka

TeV Energy Superconducting Linear Accelerator

Radiation pulse duration (FWHM)	50-100 fs
Radiation peak power	1 GW
Spectrum width	1 %
Bunch charge	2.8 nC
Charge in radiative part of bunch	0.2 nC

Peak brilliance above design value Exceeds any source at this wavelength by >1000

iii se ka

TeV Energy Superconducting Linear Accelerator

Proposed publications

1. Nature:

A new, ultra-brilliant radiation source for VUV radiation

2. Phys. Rev. Lett.:

Generation of GW-level radiation pulses from a VUV Self- Amplified Spontaneous Emission Free Electron Laser operating in the femtosecond regime (see talk by M Yurkov)

Conclusion

TTF FEL has demonstrated world record wavelengths and tunability far below the visible.

Peak brilliance is >1000 time above any other radiation source at this wavelength.

Full agreement with theory.

First VUV experiments just started

FEL outlook for TTF1: User operation – reliability of TESLA systems Long pulse trains